Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











DedekindEta






Mathematica Notation

Traditional Notation









Elliptic Functions > DedekindEta[z] > Differentiation > Fractional integro-differentiation





http://functions.wolfram.com/09.49.20.0004.01









  


  










Input Form





D[DedekindEta[z], {z, \[Alpha]}] == ((Pi/12)^\[Alpha] Sum[(-1)^k E^((1/12) I (1 - 6 k)^2 Pi z) (I (1 - 6 k)^2 z)^\[Alpha] GammaRegularized[-\[Alpha], 0, (1/12) I (1 - 6 k)^2 Pi z], {k, -Infinity, Infinity}])/z^\[Alpha]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["DedekindEta", "[", "z", "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", "12"], ")"]], "\[Alpha]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "12"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]]]], ")"]], "2"], " ", "\[Pi]", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]]]], ")"]], "2"], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[FractionBox["1", "12"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]]]], ")"]], "2"], " ", "\[Pi]", " ", "z"]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <semantics> <mrow> <mi> &#951; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Eta]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[DedekindEta[Slot[1]]]]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> &#960; </mi> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> DedekindEta </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#945; </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <exp /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> GammaRegularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 0 </cn> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["DedekindEta", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", "12"], ")"]], "\[Alpha]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "12"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]]]], ")"]], "2"], " ", "\[Pi]", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]]]], ")"]], "2"], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[FractionBox["1", "12"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]]]], ")"]], "2"], " ", "\[Pi]", " ", "z"]]]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.