Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











EllipticNomeQ






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticNomeQ[m] > Series representations > Generalized power series > Expansions at generic point m==m0





http://functions.wolfram.com/09.53.06.0009.01









  


  










Input Form





EllipticNomeQ[m] == Sum[(EllipticNomeQ[Subscript[m, 0]]/k!) Sum[(Pi^p/p!) Sum[(-1)^(p + j) Binomial[p, j] (EllipticK[1 - Subscript[m, 0]]/EllipticK[Subscript[m, 0]])^j Derivative[k][Function[u, (EllipticK[1 - u]/EllipticK[u])^(p - j)]][ Subscript[m, 0]] (m - Subscript[m, 0])^k, {j, 0, p}], {p, 0, k}], {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["EllipticNomeQ", "[", SubscriptBox["m", "0"], "]"]], RowBox[List["k", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "k"], RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "p"], RowBox[List["p", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "p"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "+", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["p", ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["EllipticK", "[", RowBox[List["1", "-", SubscriptBox["m", "0"]]], "]"]], RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]]], ")"]], "j"], RowBox[List[RowBox[List[RowBox[List["Derivative", "[", "k", "]"]], "[", RowBox[List["Function", "[", RowBox[List["u", ",", " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["EllipticK", "[", RowBox[List["1", "-", "u"]], "]"]], RowBox[List["EllipticK", "[", "u", "]"]]], ")"]], RowBox[List["p", "-", "j"]]]]], "]"]], "]"]], "[", SubscriptBox["m", "0"], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "k"]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> &#960; </mi> <mi> p </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mi> p </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;p&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mrow> <mi> Function </mi> <mo> [ </mo> <mrow> <mi> u </mi> <mo> , </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> u </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> u </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mo> ] </mo> </mrow> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;k&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticNomeQ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <ci> p </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> p </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> D </ci> <apply> <apply> <ci> Function </ci> <ci> u </ci> <apply> <power /> <apply> <times /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <ci> k </ci> </list> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticNomeQ", "[", "m_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["EllipticNomeQ", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "k"], FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "p"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "p"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "+", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["p", ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["EllipticK", "[", RowBox[List["1", "-", SubscriptBox["mm", "0"]]], "]"]], RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]]], ")"]], "j"], " ", RowBox[List[SuperscriptBox[RowBox[List["Function", "[", RowBox[List["u", ",", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["EllipticK", "[", RowBox[List["1", "-", "u"]], "]"]], RowBox[List["EllipticK", "[", "u", "]"]]], ")"]], RowBox[List["p", "-", "j"]]]]], "]"]], TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", SubscriptBox["mm", "0"], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "k"]]]]]]], RowBox[List["p", "!"]]]]]]], RowBox[List["k", "!"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.