Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticTheta






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticTheta[3,z,q] > Series representations > q-series > Other q-series representations





http://functions.wolfram.com/09.03.06.0017.01









  


  










Input Form





EllipticThetaPrime[1, 0, q]^2/(4 EllipticTheta[3, z, q]^2) == Sum[(-1)^(k - 1) (2 k - 1) q^k ((Cos[(2 k - 2) z] + q^(2 k - 1) Cos[2 k z])/ (1 + 2 q^(2 k - 1) Cos[2 z] + q^(4 k - 2))), {k, 1, Infinity}]/ q^2^(-1) /; Abs[Im[z]] < Im[\[Tau]] && q == E^(I Pi \[Tau])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "0", ",", "q"]], "]"]], "2"], RowBox[List["4", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "z", ",", "q"]], "]"]], "2"]]]], "\[Equal]", RowBox[List[SuperscriptBox["q", RowBox[List[RowBox[List["-", "1"]], "/", "2"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", "1"]], ")"]], " ", SuperscriptBox["q", "k"], " ", FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", "2"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List[SuperscriptBox["q", RowBox[List[RowBox[List["2", "k"]], "-", "1"]]], RowBox[List["Cos", "[", RowBox[List["2", "k", " ", "z"]], "]"]]]]]], RowBox[List["1", "+", RowBox[List["2", SuperscriptBox["q", RowBox[List[RowBox[List["2", "k"]], "-", "1"]]], RowBox[List["Cos", "[", RowBox[List["2", "z"]], "]"]]]], "+", SuperscriptBox["q", RowBox[List[RowBox[List["4", "k"]], "-", "2"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], "<", RowBox[List["Im", "[", "\[Tau]", "]"]]]], "\[And]", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Tau]"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <msup> <mrow> <msubsup> <mi> &#977; </mi> <mn> 1 </mn> <mo> &#8242; </mo> </msubsup> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mi> q </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#964; </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#10869; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#964; </mi> </mrow> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <power /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <apply> <ci> Subscript </ci> <ci> &#977; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <ci> z </ci> <ci> q </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> q </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> q </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <imaginary /> <ci> z </ci> </apply> </apply> <apply> <imaginary /> <ci> &#964; </ci> </apply> </apply> <apply> <eq /> <ci> q </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> &#964; </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "0", ",", "q_"]], "]"]], "2"], RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "z_", ",", "q_"]], "]"]], "2"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", SqrtBox["q"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], " ", SuperscriptBox["q", "k"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "2"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List[SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "k", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", SuperscriptBox["q", RowBox[List[RowBox[List["4", " ", "k"]], "-", "2"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], "<", RowBox[List["Im", "[", "\[Tau]", "]"]]]], "&&", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Tau]"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.