Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticThetaPrime






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticThetaPrime[1,z,q] > Specific values > Specialized values > For fixed q





http://functions.wolfram.com/09.05.03.0005.01









  


  










Input Form





EllipticThetaPrime[1, 0, q]^8 == ((2 Subscript[\[Omega], 1])/Pi)^12 (Subscript[e, 2] - Subscript[e, 3])^2 (Subscript[e, 1] - Subscript[e, 2])^ 2 (Subscript[e, 1] - Subscript[e, 3])^2 /; {Subscript[\[Omega], 1], Subscript[\[Omega], 3]} == WeierstrassHalfPeriods[{Subscript[g, 2], Subscript[g, 3]}] && Subscript[\[Omega], 2] == -Subscript[\[Omega], 1] - Subscript[\[Omega], 3] && \[Tau] == Subscript[\[Omega], 3]/ Subscript[\[Omega], 1] && q == E^(\[Tau] Pi I) && Subscript[e, \[Alpha]] == WeierstrassP[Subscript[\[Omega], \[Alpha]], {Subscript[g, 2], Subscript[g, 3]}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "0", ",", "q"]], "]"]], "8"], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"]]], "\[Pi]"], ")"]], "12"], SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["e", "2"], "-", SubscriptBox["e", "3"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]], ")"]], "2"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["\[Omega]", "2"], "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["\[Omega]", "1"]]], "-", SubscriptBox["\[Omega]", "3"]]]]], "\[And]", RowBox[List["\[Tau]", "\[Equal]", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]]]], "\[And]", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Tau]", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]], "\[And]", RowBox[List[SubscriptBox["e", "\[Alpha]"], "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["\[Omega]", "\[Alpha]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <msubsup> <mi> &#977; </mi> <mn> 1 </mn> <mo> &#8242; </mo> </msubsup> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mi> &#960; </mi> </mfrac> <mo> ) </mo> </mrow> <mn> 12 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> e </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <mi> &#969; </mi> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mrow> <mstyle scriptlevel='0'> <mo> - </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <mi> &#969; </mi> </mstyle> <mstyle scriptlevel='0'> <mo> ( </mo> </mstyle> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#969; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msup> <mstyle scriptlevel='0'> <mi> &#969; </mi> </mstyle> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#964; </mi> <mo> &#10869; </mo> <mfrac> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#10869; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#964; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </msup> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> e </mi> <mi> &#945; </mi> </msub> <mo> &#10869; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mi> &#945; </mi> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <apply> <ci> Subscript </ci> <ci> &#977; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 12 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <list> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> &#969; </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> &#969; </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#969; </ci> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#969; </ci> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> <apply> <eq /> <ci> &#964; </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> q </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> &#964; </ci> <pi /> <imaginaryi /> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> &#945; </ci> </apply> <apply> <ci> WeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> &#945; </ci> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "0", ",", "q_"]], "]"]], "8"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]], "\[Pi]"], ")"]], "12"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["e", "2"], "-", SubscriptBox["e", "3"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]], ")"]], "2"]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "&&", RowBox[List[SubscriptBox["\[Omega]", "2"], "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["\[Omega]", "1"]]], "-", SubscriptBox["\[Omega]", "3"]]]]], "&&", RowBox[List["\[Tau]", "\[Equal]", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]]]], "&&", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Tau]", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]], "&&", RowBox[List[SubscriptBox["e", "\[Alpha]"], "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["\[Omega]", "\[Alpha]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.