Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticThetaPrime






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticThetaPrime[1,z,q] > Differentiation > Fractional integro-differentiation > With respect to q





http://functions.wolfram.com/09.05.20.0008.01









  


  










Input Form





D[EllipticThetaPrime[1, z, q], {q, \[Alpha]}] == 2 q^(1/4 - \[Alpha]) Sum[(-1)^k q^(k (k + 1)) (Gamma[5/4 + k + k^2]/ Gamma[5/4 + k + k^2 - \[Alpha]]) (2 k + 1) Cos[(2 k + 1) z], {k, 0, Infinity}] /; Abs[q] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["q", ",", "\[Alpha]"]], "}"]]], RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]]], "\[Equal]", RowBox[List["2", " ", SuperscriptBox["q", RowBox[List[FractionBox["1", "4"], "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["q", RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", FractionBox[RowBox[List["Gamma", "[", RowBox[List[FractionBox["5", "4"], "+", "k", "+", SuperscriptBox["k", "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["5", "4"], "+", "k", "+", SuperscriptBox["k", "2"], "-", "\[Alpha]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", "z"]], "]"]]]]]]]]]], "/;", " ", RowBox[List[RowBox[List["Abs", "[", "q", "]"]], "<", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <msubsup> <mi> &#977; </mi> <mn> 1 </mn> <mo> &#8242; </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> q </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> k </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> k </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> q </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> q </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <apply> <ci> Subscript </ci> <ci> &#977; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <ci> z </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <ci> k </ci> <cn type='rational'> 5 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <cos /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='rational'> 5 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <ci> q </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["q_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "z_", ",", "q_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["2", " ", SuperscriptBox["q", RowBox[List[FractionBox["1", "4"], "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["q", RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["5", "4"], "+", "k", "+", SuperscriptBox["k", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", "z"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["5", "4"], "+", "k", "+", SuperscriptBox["k", "2"], "-", "\[Alpha]"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "q", "]"]], "<", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29