Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiCN






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiCN[z,m] > Series representations > Generalized power series > Expansions at generic point m==m0 > For the function itself





http://functions.wolfram.com/09.38.06.0015.01









  


  










Input Form





InverseJacobiCN[z, m] \[Proportional] InverseJacobiCN[z, Subscript[m, 0]] + (1/6) (1 - z^2)^(3/2) AppellF1[3/2, 1/2, 3/2, 5/2, 1 - z^2, (1 - z^2) Subscript[m, 0]] (m - Subscript[m, 0]) + (3/40) (1 - z^2)^(5/2) AppellF1[5/2, 1/2, 5/2, 7/2, 1 - z^2, (1 - z^2) Subscript[m, 0]] (m - Subscript[m, 0])^2 + \[Ellipsis] /; (m -> Subscript[m, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", SubscriptBox["m", "0"]]], "]"]], "+", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", FractionBox["5", "2"], ",", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ",", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], " ", SubscriptBox["m", "0"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["3", "40"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["5", "2"], ",", FractionBox["1", "2"], ",", FractionBox["5", "2"], ",", FractionBox["7", "2"], ",", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ",", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], " ", SubscriptBox["m", "0"]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", SubscriptBox["m", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 40 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mtext> </mtext> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> InverseJacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <ci> InverseJacobiCN </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> AppellF1 </ci> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 40 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> AppellF1 </ci> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", SubscriptBox["mm", "0"]]], "]"]], "+", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", FractionBox["5", "2"], ",", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ",", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], " ", SubscriptBox["mm", "0"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["3", "40"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["5", "2"], ",", FractionBox["1", "2"], ",", FractionBox["5", "2"], ",", FractionBox["7", "2"], ",", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ",", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], " ", SubscriptBox["mm", "0"]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", SubscriptBox["mm", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.