html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiCS

 http://functions.wolfram.com/09.39.27.0011.01

 Input Form

 InverseJacobiCS[z, m] == (1/Sqrt[m]) InverseJacobiSD[(1/z) Sqrt[m], 1/m] /; z > 0 && Element[m, Reals]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", SqrtBox["m"]], RowBox[List["InverseJacobiSD", "[", RowBox[List[RowBox[List[FractionBox["1", "z"], SqrtBox["m"]]], ",", FractionBox["1", "m"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]]]]]]]]

 MathML Form

 cs - 1 ( z m ) 1 m sd - 1 ( m z 1 m ) /; z > 0 m TagBox["\[DoubleStruckCapitalR]", Function[Reals]] Condition InverseJacobiCS z m 1 m 1 2 -1 InverseJacobiSD m 1 2 z -1 1 m -1 z 0 m [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiCS", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["InverseJacobiSD", "[", RowBox[List[FractionBox[SqrtBox["m"], "z"], ",", FractionBox["1", "m"]]], "]"]], SqrtBox["m"]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", "\[Element]", "Reals"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29