html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiDC

 http://functions.wolfram.com/09.40.04.0003.01

 Input Form

 InverseJacobiDC[-z, m] == (2/Sqrt[m]) EllipticF[ArcSin[z], 1/m] + InverseJacobiDC[z, m]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List[RowBox[List["-", "z"]], ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["2", RowBox[List[SqrtBox["m"], " "]]], RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", FractionBox["1", "m"]]], "]"]]]], "+", RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]]

 MathML Form

 dc - 1 ( - z m ) 2 m F ( sin - 1 ( z ) 1 m ) + dc - 1 ( z m ) InverseJacobiDC -1 z m 2 m 1 2 -1 EllipticF z 1 m -1 InverseJacobiDC z m [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDC", "[", RowBox[List[RowBox[List["-", "z_"]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", FractionBox["1", "m"]]], "]"]]]], SqrtBox["m"]], "+", RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29

© 1998-2013 Wolfram Research, Inc.