html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiDC

 http://functions.wolfram.com/09.40.27.0008.01

 Input Form

 InverseJacobiDC[z, m] == (-(I/Sqrt[m])) InverseJacobiND[z, 1 - 1/m] /; z > 0 && m > 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " "]], SqrtBox["m"]]]], RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", RowBox[List["1", "-", FractionBox["1", "m"]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]

 MathML Form

 dc - 1 ( z m ) - m nd - 1 ( z 1 - 1 m ) /; z > 0 m > 0 Condition InverseJacobiDC z m -1 m 1 2 -1 InverseJacobiND z 1 -1 1 m -1 z 0 m 0 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", RowBox[List["1", "-", FractionBox["1", "m"]]]]], "]"]]]], SqrtBox["m"]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29