html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiDN

 http://functions.wolfram.com/09.41.04.0009.01

 Input Form

 BranchPoints[InverseJacobiDN[z, m], z] == {0, 1, -1, Sqrt[1 - m], -Sqrt[1 - m], ComplexInfinity}

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["BranchPoints", "[", RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "1", ",", RowBox[List["-", "1"]], ",", SqrtBox[RowBox[List["1", "-", "m"]]], ",", RowBox[List["-", SqrtBox[RowBox[List["1", "-", "m"]]]]], ",", " ", "ComplexInfinity"]], "}"]]]]]]

 MathML Form

 ℬ𝒫 z ( dn - 1 ( z m ) ) { 0 , 1 , - 1 , 1 - m , - 1 - m , ~ } Subscript ℬ𝒫 z InverseJacobiDN z m 0 1 -1 1 -1 m 1 2 -1 1 -1 m 1 2 OverTilde [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BranchPoints", "[", RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List["0", ",", "1", ",", RowBox[List["-", "1"]], ",", SqrtBox[RowBox[List["1", "-", "m"]]], ",", RowBox[List["-", SqrtBox[RowBox[List["1", "-", "m"]]]]], ",", "ComplexInfinity"]], "}"]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29

© 1998-2013 Wolfram Research, Inc.