html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiDN

 http://functions.wolfram.com/09.41.06.0007.01

 Input Form

 InverseJacobiDN[z, m] \[Proportional] (1/Sqrt[m - 1]) EllipticK[1/(1 - m)] (1 + O[z])

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["m", "-", "1"]]]], RowBox[List["EllipticK", "[", FractionBox["1", RowBox[List["1", "-", "m"]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", "z", "]"]]]], ")"]]]]]]]]

 MathML Form

 dn - 1 ( z m ) 1 m - 1 K ( 1 1 - m ) ( 1 + O ( z ) ) Proportional InverseJacobiDN z m 1 m -1 1 2 -1 EllipticK 1 1 -1 m -1 1 O z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["EllipticK", "[", FractionBox["1", RowBox[List["1", "-", "m"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", "z", "]"]]]], ")"]]]], SqrtBox[RowBox[List["m", "-", "1"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02