html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiDN

 http://functions.wolfram.com/09.41.20.0001.02

 Input Form

 D[InverseJacobiDN[z, m], z] == -(JacobiCS[InverseJacobiDN[z, m], m]/ (-1 + m + z^2))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "z"], RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]]]]]]]]

 MathML Form

 dn - 1 ( z m ) z - cs ( dn - 1 ( z m ) m ) z 2 + m - 1 z InverseJacobiDN z m -1 JacobiCS InverseJacobiDN z m m z 2 m -1 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["z_"]]], RowBox[List["InverseJacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29