html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiDN

 http://functions.wolfram.com/09.41.27.0015.01

 Input Form

 InverseJacobiDN[z, m] == InverseJacobiSN[Sqrt[(1 - z^2)/m], m] /; 0 < z < 1 && m > 1

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List["InverseJacobiSN", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], "m"]], ",", "m"]], "]"]]]], "/;", RowBox[List[RowBox[List["0", "<", "z", "<", "1"]], "\[And]", RowBox[List["m", ">", "1"]]]]]]]]

 MathML Form

 dn - 1 ( z m ) sn - 1 ( 1 - z 2 m m ) /; 0 < z < 1 m > 1 Condition InverseJacobiDN z m InverseJacobiSN 1 -1 z 2 m -1 1 2 m 0 z 1 m 1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], "m"]], ",", "m"]], "]"]], "/;", RowBox[List[RowBox[List["0", "<", "z", "<", "1"]], "&&", RowBox[List["m", ">", "1"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29

© 1998-2013 Wolfram Research, Inc.