html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiND

 http://functions.wolfram.com/09.44.27.0011.01

 Input Form

 InverseJacobiND[z, m] == I EllipticK[1 - m] - (1/Sqrt[m]) InverseJacobiSD[I z Sqrt[m], 1/m]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]], "-", RowBox[List[FractionBox["1", SqrtBox["m"]], RowBox[List["InverseJacobiSD", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z", " ", SqrtBox["m"]]], ",", FractionBox["1", "m"]]], "]"]]]]]]]]]]

 MathML Form

 nd - 1 ( z m ) K ( 1 - m ) - 1 m sd - 1 ( z m 1 m ) InverseJacobiND z m EllipticK 1 -1 m -1 1 m 1 2 -1 InverseJacobiSD z m 1 2 1 m -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiND", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]], "-", FractionBox[RowBox[List["InverseJacobiSD", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z", " ", SqrtBox["m"]]], ",", FractionBox["1", "m"]]], "]"]], SqrtBox["m"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29