Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiNS






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiNS[z,m] > Series representations > Generalized power series > Expansions at m==0





http://functions.wolfram.com/09.45.06.0003.02









  


  










Input Form





InverseJacobiNS[z, m] \[Proportional] ArcCsc[z] - (1/(4 z)) (Sqrt[1 - 1/z^2] - z ArcCsc[z]) m - (3/(64 z^3)) (Sqrt[1 - 1/z^2] (2 + 3 z^2) - 3 z^3 ArcCsc[z]) m^2 - \[Ellipsis] /; (m -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiNS", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["ArcCsc", "[", "z", "]"]], "-", RowBox[List[FractionBox["1", RowBox[List["4", " ", "z"]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], "-", RowBox[List["z", " ", RowBox[List["ArcCsc", "[", "z", "]"]]]]]], ")"]], "m"]], "-", RowBox[List[FractionBox["3", RowBox[List["64", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["3", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "-", RowBox[List["3", " ", SuperscriptBox["z", "3"], " ", RowBox[List["ArcCsc", "[", "z", "]"]]]]]], ")"]], SuperscriptBox["m", "2"]]], "-", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> ns </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mtext> </mtext> </mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> InverseJacobiNS </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <arccsc /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <arccsc /> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <arccsc /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiNS", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", "z", "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], "-", RowBox[List["z", " ", RowBox[List["ArcCsc", "[", "z", "]"]]]]]], ")"]], " ", "m"]], RowBox[List["4", " ", "z"]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["3", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "-", RowBox[List["3", " ", SuperscriptBox["z", "3"], " ", RowBox[List["ArcCsc", "[", "z", "]"]]]]]], ")"]], " ", SuperscriptBox["m", "2"]]], RowBox[List["64", " ", SuperscriptBox["z", "3"]]]], "-", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29