html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiSD

 http://functions.wolfram.com/09.47.03.0014.01

 Input Form

 InverseJacobiSD[-Infinity, m] == (-(1/Sqrt[m - 1])) EllipticK[1/(1 - m)] /; m > 1

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSD", "[", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox[RowBox[List["m", "-", "1"]]], " "]]]]], RowBox[List["EllipticK", "[", FractionBox["1", RowBox[List["1", "-", "m"]]], "]"]]]]]], "/;", RowBox[List["m", ">", "1"]]]]]]

 MathML Form

 sd - 1 ( - m ) - 1 m - 1 K ( 1 1 - m ) /; m > 1 Condition InverseJacobiSD -1 m -1 1 m -1 1 2 -1 EllipticK 1 1 -1 m -1 m 1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiSD", "[", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["EllipticK", "[", FractionBox["1", RowBox[List["1", "-", "m"]]], "]"]], SqrtBox[RowBox[List["m", "-", "1"]]]]]], "/;", RowBox[List["m", ">", "1"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29