Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiSD






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiSD[z,m] > Series representations > Generalized power series > Expansions at m==0





http://functions.wolfram.com/09.47.06.0003.01









  


  










Input Form





InverseJacobiSD[z, m] \[Proportional] ArcSin[z] + ((z Sqrt[1 - z^2] (1 + z^2) + (z^2 - 1) ArcSin[z])/ (4 (z^2 - 1))) m - ((z Sqrt[1 - z^2] (9 - 12 z^2 - 11 z^4 + 6 z^6) - 9 (z^2 - 1)^2 ArcSin[z])/(64 (z^2 - 1)^2)) m^2 + \[Ellipsis] /; (m -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSD", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], " ", RowBox[List["ArcSin", "[", "z", "]"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]]]]], "m"]], "-", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["12", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6", " ", SuperscriptBox["z", "6"]]]]], ")"]]]], "-", RowBox[List["9", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], "2"], " ", RowBox[List["ArcSin", "[", "z", "]"]]]]]]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], "2"]]]], SuperscriptBox["m", "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> InverseJacobiSD </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <arcsin /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <arcsin /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <arcsin /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiSD", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], " ", RowBox[List["ArcSin", "[", "z", "]"]]]]]], ")"]], " ", "m"]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["12", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6", " ", SuperscriptBox["z", "6"]]]]], ")"]]]], "-", RowBox[List["9", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], "2"], " ", RowBox[List["ArcSin", "[", "z", "]"]]]]]], ")"]], " ", SuperscriptBox["m", "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.