html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiSD

 http://functions.wolfram.com/09.47.27.0010.01

 Input Form

 InverseJacobiSC[z, m] == (-I) InverseJacobiNS[-(I/z), 1 - m] /; z > 0 && Element[m, Reals]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["InverseJacobiNS", "[", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]], ",", RowBox[List["1", "-", "m"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]]]]]]]]

 MathML Form

 sc - 1 ( z m ) - ns - 1 ( - z 1 - m ) /; z > 0 m TagBox["\[DoubleStruckCapitalR]", Function[Reals]] Condition InverseJacobiSC z m -1 InverseJacobiNS -1 z -1 1 -1 m z 0 m [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiSC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["InverseJacobiNS", "[", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]], ",", RowBox[List["1", "-", "m"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", "\[Element]", "Reals"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29