html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiSN

 http://functions.wolfram.com/09.48.04.0009.01

 Input Form

 BranchPoints[InverseJacobiSN[z, m], z] == {1, -1, 1/Sqrt[m], -(1/Sqrt[m]), ComplexInfinity}

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["BranchPoints", "[", RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "1"]], ",", FractionBox["1", SqrtBox["m"]], ",", RowBox[List["-", FractionBox["1", SqrtBox["m"]]]], ",", " ", "ComplexInfinity"]], "}"]]]]]]

 MathML Form

 ℬ𝒫 z ( sn - 1 ( z m ) ) { 1 , - 1 , 1 m , - 1 m , ~ } Subscript ℬ𝒫 z InverseJacobiSN z m 1 -1 1 m 1 2 -1 -1 1 m 1 2 -1 OverTilde [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BranchPoints", "[", RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "1"]], ",", FractionBox["1", SqrtBox["m"]], ",", RowBox[List["-", FractionBox["1", SqrtBox["m"]]]], ",", "ComplexInfinity"]], "}"]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29