Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiSN






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiSN[z,m] > Transformations > Products, sums, and powers of the direct function > Sums of the direct function





http://functions.wolfram.com/09.48.16.0002.01









  


  










Input Form





InverseJacobiSN[Subscript[z, 1], m] + InverseJacobiSN[Subscript[z, 2], m] == InverseJacobiSN[ (Subscript[z, 2] Sqrt[(1 - Subscript[z, 1]^2) (1 - m Subscript[z, 1]^2)] + Subscript[z, 1] Sqrt[(1 - Subscript[z, 2]^2) (1 - m Subscript[z, 2]^2)])/ (1 - m Subscript[z, 1]^2 Subscript[z, 2]^2), m] /; Element[Subscript[z, 1], Reals] && Element[Subscript[z, 2], Reals] && Element[m, Reals] && -(1/m) < Subscript[z, 1] < 1/m && -(1/m) < Subscript[z, 2] < 1/m










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List[SubscriptBox["z", "1"], ",", "m"]], "]"]], "+", RowBox[List["InverseJacobiSN", "[", RowBox[List[SubscriptBox["z", "2"], ",", "m"]], "]"]]]], "\[Equal]", RowBox[List["InverseJacobiSN", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[SubscriptBox["z", "2"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubsuperscriptBox["z", "1", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SubsuperscriptBox["z", "1", "2"]]]]], ")"]]]]]]], "+", RowBox[List[SubscriptBox["z", "1"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubsuperscriptBox["z", "2", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SubsuperscriptBox["z", "2", "2"]]]]], ")"]]]]]]]]], RowBox[List["1", "-", RowBox[List["m", " ", SubsuperscriptBox["z", "1", "2"], " ", SubsuperscriptBox["z", "2", "2"]]]]]], ",", "m"]], "]"]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["z", "1"], "\[Element]", "Reals"]], "\[And]", RowBox[List[SubscriptBox["z", "2"], "\[Element]", "Reals"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["-", FractionBox["1", "m"]]], "<", SubscriptBox["z", "1"], "<", FractionBox["1", "m"]]], "\[And]", RowBox[List[RowBox[List["-", FractionBox["1", "m"]]], "<", SubscriptBox["z", "2"], "<", FractionBox["1", "m"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> sn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> sn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mi> sn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> </mfrac> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> &lt; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &lt; </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> &lt; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> &lt; </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <ci> InverseJacobiSN </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> m </ci> </apply> <apply> <ci> InverseJacobiSN </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> </apply> <apply> <ci> InverseJacobiSN </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <reals /> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <reals /> </apply> <apply> <in /> <ci> m </ci> <reals /> </apply> <apply> <lt /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <lt /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List[SubscriptBox["z_", "1"], ",", "m_"]], "]"]], "+", RowBox[List["InverseJacobiSN", "[", RowBox[List[SubscriptBox["z_", "2"], ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[SubscriptBox["zz", "2"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubsuperscriptBox["zz", "1", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SubsuperscriptBox["zz", "1", "2"]]]]], ")"]]]]]]], "+", RowBox[List[SubscriptBox["zz", "1"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubsuperscriptBox["zz", "2", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SubsuperscriptBox["zz", "2", "2"]]]]], ")"]]]]]]]]], RowBox[List["1", "-", RowBox[List["m", " ", SubsuperscriptBox["zz", "1", "2"], " ", SubsuperscriptBox["zz", "2", "2"]]]]]], ",", "m"]], "]"]], "/;", RowBox[List[RowBox[List[SubscriptBox["zz", "1"], "\[Element]", "Reals"]], "&&", RowBox[List[SubscriptBox["zz", "2"], "\[Element]", "Reals"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["-", FractionBox["1", "m"]]], "<", SubscriptBox["zz", "1"], "<", FractionBox["1", "m"]]], "&&", RowBox[List[RowBox[List["-", FractionBox["1", "m"]]], "<", SubscriptBox["zz", "2"], "<", FractionBox["1", "m"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.