html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiSN

 http://functions.wolfram.com/09.48.27.0004.01

 Input Form

 InverseJacobiSN[z, m] == InverseJacobiCN[Sqrt[1 - z^2], m] /; 0 < z < 1 && Element[m, Reals]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List["InverseJacobiCN", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], ",", "m"]], "]"]]]], "/;", RowBox[List[RowBox[List["0", "<", "z", "<", "1"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]]]]]]]]

 MathML Form

 sn - 1 ( z m ) cn - 1 ( 1 - z 2 m ) /; 0 < z < 1 m TagBox["\[DoubleStruckCapitalR]", Function[Reals]] Condition InverseJacobiSN z m InverseJacobiCN 1 -1 z 2 1 2 m 0 z 1 m [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], ",", "m"]], "]"]], "/;", RowBox[List[RowBox[List["0", "<", "z", "<", "1"]], "&&", RowBox[List["m", "\[Element]", "Reals"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29