Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiAmplitude






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiAmplitude[z,m] > Specific values > Specialized values > Derivatives with respect to m > For m==0





http://functions.wolfram.com/09.24.03.0020.01









  


  










Input Form





Derivative[0, 5][JacobiAmplitude][z, 0] == (1/65536) (-165480 z + 160 z (-1653 + 184 z^2) Cos[2 z] + 160 z (-267 + 32 z^2) Cos[4 z] - 3480 z Cos[6 z] - 120 z Cos[8 z] + 5 (36213 - 26496 z^2 + 512 z^4) Sin[2 z] - 24960 (-1 + z) (1 + z) Sin[4 z] - 60 (-37 + 24 z^2) Sin[6 z] + 120 Sin[8 z] + 3 Sin[10 z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["JacobiAmplitude", TagBox[RowBox[List["(", RowBox[List["0", ",", "5"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z", ",", "0"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "65536"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "165480"]], " ", "z"]], "+", RowBox[List["160", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1653"]], "+", RowBox[List["184", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["160", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "267"]], "+", RowBox[List["32", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["4", " ", "z"]], "]"]]]], "-", RowBox[List["3480", " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["6", " ", "z"]], "]"]]]], "-", RowBox[List["120", " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["8", " ", "z"]], "]"]]]], "+", RowBox[List["5", " ", RowBox[List["(", RowBox[List["36213", "-", RowBox[List["26496", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["24960", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["4", " ", "z"]], "]"]]]], "-", RowBox[List["60", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "37"]], "+", RowBox[List["24", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["6", " ", "z"]], "]"]]]], "+", RowBox[List["120", " ", RowBox[List["Sin", "[", RowBox[List["8", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Sin", "[", RowBox[List["10", " ", "z"]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> am </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;5&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 65536 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 160 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 184 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1653 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 160 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 267 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 3480 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 120 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 165480 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 26496 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 36213 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 24960 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 37 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 120 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 5 </cn> </list> <ci> am </ci> </apply> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 65536 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 160 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 184 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1653 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 160 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -267 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3480 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 165480 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 26496 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 36213 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24960 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -37 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <sin /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <sin /> <apply> <times /> <cn type='integer'> 10 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["JacobiAmplitude", TagBox[RowBox[List["(", RowBox[List["0", ",", "5"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z_", ",", "0"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "165480"]], " ", "z"]], "+", RowBox[List["160", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1653"]], "+", RowBox[List["184", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["160", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "267"]], "+", RowBox[List["32", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["4", " ", "z"]], "]"]]]], "-", RowBox[List["3480", " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["6", " ", "z"]], "]"]]]], "-", RowBox[List["120", " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["8", " ", "z"]], "]"]]]], "+", RowBox[List["5", " ", RowBox[List["(", RowBox[List["36213", "-", RowBox[List["26496", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["24960", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["4", " ", "z"]], "]"]]]], "-", RowBox[List["60", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "37"]], "+", RowBox[List["24", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["6", " ", "z"]], "]"]]]], "+", RowBox[List["120", " ", RowBox[List["Sin", "[", RowBox[List["8", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Sin", "[", RowBox[List["10", " ", "z"]], "]"]]]]]], "65536"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.