Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiAmplitude






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiAmplitude[z,m] > Specific values > Specialized values > Derivatives with respect to m > For m==1





http://functions.wolfram.com/09.24.03.0028.01









  


  










Input Form





Derivative[0, 3][JacobiAmplitude][z, 1] == (1/4096) Sech[z]^3 (1032 z - 96 z^3 + 16 z (75 + 2 z^2) Cosh[2 z] + 168 z Cosh[4 z] + 3 (-201 + 64 z^2) Sinh[2 z] - 12 (25 + 2 z^2) Sinh[4 z] + Sinh[6 z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["JacobiAmplitude", TagBox[RowBox[List["(", RowBox[List["0", ",", "3"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z", ",", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "4096"], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["1032", " ", "z"]], "-", RowBox[List["96", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List["75", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["168", " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["4", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "201"]], "+", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["12", " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["4", " ", "z"]], "]"]]]], "+", RowBox[List["Sinh", "[", RowBox[List["6", " ", "z"]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> am </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;3&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4096 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 96 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 75 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 168 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 1032 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 201 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 3 </cn> </list> <ci> am </ci> </apply> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4096 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -96 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 75 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 168 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 1032 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -201 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 25 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["JacobiAmplitude", TagBox[RowBox[List["(", RowBox[List["0", ",", "3"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z_", ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["1032", " ", "z"]], "-", RowBox[List["96", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List["75", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["168", " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["4", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "201"]], "+", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["12", " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["4", " ", "z"]], "]"]]]], "+", RowBox[List["Sinh", "[", RowBox[List["6", " ", "z"]], "]"]]]], ")"]]]], "4096"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.