Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiAmplitude






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiAmplitude[z,m] > Specific values > Specialized values > Derivatives with respect to m > For m==1





http://functions.wolfram.com/09.24.03.0029.01









  


  










Input Form





Derivative[0, 4][JacobiAmplitude][z, 1] == (1/32768) Sech[z]^4 (104 z (-381 + 20 z^2) Cosh[z] - 4 z (4239 + 160 z^2) Cosh[3 z] - 8 z (279 + 4 z^2) Cosh[5 z] + 12 z Cosh[7 z] + 2 (3711 - 900 z^2 + 368 z^4) Sinh[z] - (-11097 + 1344 z^2 + 32 z^4) Sinh[3 z] + 3 (1217 + 152 z^2) Sinh[5 z] - 24 Sinh[7 z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["JacobiAmplitude", TagBox[RowBox[List["(", RowBox[List["0", ",", "4"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z", ",", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "32768"], SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["104", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "381"]], "+", RowBox[List["20", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["4239", "+", RowBox[List["160", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "-", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["279", "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["5", " ", "z"]], "]"]]]], "+", RowBox[List["12", " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["7", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["3711", "-", RowBox[List["900", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["368", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "11097"]], "+", RowBox[List["1344", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["32", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["1217", "+", RowBox[List["152", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["5", " ", "z"]], "]"]]]], "-", RowBox[List["24", " ", RowBox[List["Sinh", "[", RowBox[List["7", " ", "z"]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> am </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;4&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 32768 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 104 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 381 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 4239 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 279 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 368 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 900 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 3711 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1344 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 11097 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 152 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1217 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 4 </cn> </list> <ci> am </ci> </apply> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 32768 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 104 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -381 </cn> </apply> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 4239 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 279 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <ci> z </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 368 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 900 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3711 </cn> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1344 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -11097 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 152 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1217 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <sinh /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["JacobiAmplitude", TagBox[RowBox[List["(", RowBox[List["0", ",", "4"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z_", ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["104", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "381"]], "+", RowBox[List["20", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["4239", "+", RowBox[List["160", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "-", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["279", "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["5", " ", "z"]], "]"]]]], "+", RowBox[List["12", " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["7", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["3711", "-", RowBox[List["900", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["368", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "11097"]], "+", RowBox[List["1344", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["32", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["1217", "+", RowBox[List["152", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["5", " ", "z"]], "]"]]]], "-", RowBox[List["24", " ", RowBox[List["Sinh", "[", RowBox[List["7", " ", "z"]], "]"]]]]]], ")"]]]], "32768"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.