Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiAmplitude






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiAmplitude[z,m] > Series representations > Generalized power series > Expansions at generic point z==z0 > For the function itself





http://functions.wolfram.com/09.24.06.0005.01









  


  










Input Form





JacobiAmplitude[z, m] \[Proportional] JacobiAmplitude[Subscript[z, 0], m] + JacobiDN[Subscript[z, 0], m] (z - Subscript[z, 0]) - (1/2) m JacobiCN[Subscript[z, 0], m] JacobiSN[Subscript[z, 0], m] (z - Subscript[z, 0])^2 - (1/6) m JacobiDN[Subscript[z, 0], m] (JacobiCN[Subscript[z, 0], m]^2 - JacobiSN[Subscript[z, 0], m]^2) (z - Subscript[z, 0])^3 + (1/24) m JacobiCN[Subscript[z, 0], m] JacobiSN[Subscript[z, 0], m] (m JacobiCN[Subscript[z, 0], m]^2 + 4 JacobiDN[Subscript[z, 0], m]^2 - m JacobiSN[Subscript[z, 0], m]^2) (z - Subscript[z, 0])^4 + (1/120) m JacobiDN[Subscript[z, 0], m] (m JacobiCN[Subscript[z, 0], m]^4 + 4 JacobiCN[Subscript[z, 0], m]^2 JacobiDN[Subscript[z, 0], m]^2 - 2 (7 m JacobiCN[Subscript[z, 0], m]^2 + 2 JacobiDN[Subscript[z, 0], m]^ 2) JacobiSN[Subscript[z, 0], m]^2 + m JacobiSN[Subscript[z, 0], m]^4) (z - Subscript[z, 0])^5 + \[Ellipsis] /; (z -> Subscript[z, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "m", " ", RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "-", RowBox[List[FractionBox["1", "6"], " ", "m", " ", RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"], "-", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"]]], "+", RowBox[List[FractionBox["1", "24"], " ", "m", " ", RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]], "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "4"]]], "+", RowBox[List[FractionBox["1", "120"], " ", "m", " ", RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "4"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["7", " ", "m", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "4"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "5"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> dn </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 24 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 120 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> <mo> + </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> dn </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 24 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 120 </mn> </mfrac> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> <mo> + </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiAmplitude", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "m", " ", RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], "-", RowBox[List[FractionBox["1", "6"], " ", "m", " ", RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"], "-", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "3"]]], "+", RowBox[List[FractionBox["1", "24"], " ", "m", " ", RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]], "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "4"]]], "+", RowBox[List[FractionBox["1", "120"], " ", "m", " ", RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "4"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["7", " ", "m", " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "5"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.