Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiAmplitude






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiAmplitude[z,m] > Differentiation > Symbolic differentiation > With respect to z





http://functions.wolfram.com/09.24.20.0005.02









  


  










Input Form





D[JacobiAmplitude[z, m], {z, n}] == (Pi z^(1 - n) Pochhammer[2 - n, n])/(2 EllipticK[m]) + ((2 Pi^n)/EllipticK[m]^n) Sum[((k^(n - 1) EllipticNomeQ[m]^k)/ (1 + EllipticNomeQ[m]^(2 k))) Sin[(k Pi z)/EllipticK[m] + (n Pi)/2], {k, 1, Infinity}] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["z", RowBox[List["1", "-", "n"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", "-", "n"]], ",", "n"]], "]"]]]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "+", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "n"]]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "n"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["k", RowBox[List["n", "-", "1"]]], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "k"]]], RowBox[List["1", "+", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", " ", "k"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["k", " ", "\[Pi]", " ", "z"]], RowBox[List["EllipticK", "[", "m", "]"]]], "+", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"]]], "]"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mi> n </mi> </msup> </mrow> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> k </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mrow> <msup> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> JacobiAmplitude </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> n </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <ci> k </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> k </ci> <pi /> <ci> z </ci> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["JacobiAmplitude", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["z", RowBox[List["1", "-", "n"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", "-", "n"]], ",", "n"]], "]"]]]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["\[Pi]", "n"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["k", RowBox[List["n", "-", "1"]]], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "k"]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["k", " ", "\[Pi]", " ", "z"]], RowBox[List["EllipticK", "[", "m", "]"]]], "+", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"]]], "]"]]]], RowBox[List["1", "+", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", " ", "k"]]]]]]]]]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "n"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.