Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiDC






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiDC[z,m] > Differentiation > Low-order differentiation > With respect to m





http://functions.wolfram.com/09.28.20.0004.01









  


  










Input Form





D[JacobiDC[z, m], {m, 2}] == (-(1/(4 (-1 + m) m^2))) (((-1 + m) z + EllipticE[JacobiAmplitude[z, m], m]) JacobiDC[z, m] (JacobiNC[z, m]^2 + JacobiSC[z, m]^2) ((-1 + m) z + EllipticE[JacobiAmplitude[z, m], m] - m JacobiCD[z, m] JacobiSN[z, m]) + JacobiNC[z, m] JacobiSC[z, m] ((-1 + m) (2 z - EllipticE[JacobiAmplitude[z, m], m] - EllipticF[JacobiAmplitude[z, m], m]) + ((-1 + m) z + EllipticE[JacobiAmplitude[z, m], m]) JacobiDN[z, m] Sqrt[1 - m JacobiSN[z, m]^2] - m JacobiCN[z, m] JacobiSN[z, m] Sqrt[1 - m JacobiSN[z, m]^2]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["m", ",", "2"]], "}"]]], RowBox[List["JacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["m", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List["JacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiNC", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], "-", RowBox[List["m", " ", RowBox[List["JacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["JacobiNC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z"]], "-", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]]]]], "-", RowBox[List["m", " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <mi> dc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> dc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mi> nc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> sc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> cd </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> nc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> JacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <ci> JacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> JacobiNC </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> JacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <ci> JacobiCD </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> JacobiNC </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticF </ci> <apply> <ci> JacobiAmplitude </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["m_", ",", "2"]], "}"]]]]], RowBox[List["JacobiDC", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List["JacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiNC", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], "-", RowBox[List["m", " ", RowBox[List["JacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["JacobiNC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z"]], "-", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]]]]], "-", RowBox[List["m", " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]]]]]]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["m", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.