Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiDN






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiDN[z,m] > Transformations > Products of a single Jacobi function





http://functions.wolfram.com/09.29.16.0072.01









  


  










Input Form





m^((p - 1)/2) Product[JacobiSN[z + 4 k (EllipticK[m]/p), m], {k, 0, p - 1}] == (-1)^((p - 1)/2) Product[JacobiNS[4 k (EllipticK[m]/p), m]^2, {k, 1, (p - 1)/2}] Sum[JacobiSN[z + 4 k (EllipticK[m]/p), m], {k, 0, p - 1}] /; Element[(p + 1)/2, Integers] && p >= 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["m", RowBox[List[RowBox[List["(", RowBox[List["p", "-", "1"]], ")"]], "/", "2"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["4", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["p", "-", "1"]], ")"]], "/", "2"]]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["(", RowBox[List["p", "-", "1"]], ")"]], "/", "2"]]], SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[RowBox[List["4", " ", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["4", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[FractionBox[RowBox[List["p", "+", "1"]], "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> m </mi> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </munderover> <msup> <mrow> <mi> ns </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <power /> <ci> m </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <power /> <apply> <ci> JacobiNS </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["m_", FractionBox[RowBox[List["p_", "-", "1"]], "2"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["p_", "-", "1"]]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", "k", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["p", "-", "1"]], "2"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], FractionBox[RowBox[List["p", "-", "1"]], "2"]], SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[FractionBox[RowBox[List["p", "+", "1"]], "2"], "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "1"]]]]]]]]]]










References





A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions. II", math-ph/0207019, (2002) http://arXiv.org/abs/math-ph/0207019

A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", Journal of Mathematical Physics, v. 44, issue 4, pp. 1822-1841 (2003)










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.