Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiDN






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiDN[z,m] > Integration > Indefinite integration > Involving functions of the direct function > Involving elementary functions of the direct function > Involving powers of the direct function





http://functions.wolfram.com/09.29.21.0006.01









  


  










Input Form





Integrate[1/JacobiDN[z, m]^3, z] == -((1/(2 (1 - m))) (((-2 + m) ArcCos[JacobiCN[z, m]/JacobiDN[z, m]] Sqrt[1 - JacobiCN[z, m]^2/JacobiDN[z, m]^2] JacobiDN[z, m])/ (((-m) JacobiCN[z, m]^2 + JacobiDN[z, m]^2) JacobiSN[z, m]) + (m JacobiCN[z, m] JacobiSN[z, m])/JacobiDN[z, m]^2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "3"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "m"]], ")"]], " ", RowBox[List["ArcCos", "[", FractionBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]], "]"]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]], ")"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["m", " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]], SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -2 </cn> </apply> <apply> <arccos /> <apply> <times /> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <power /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "3"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "m"]], ")"]], " ", RowBox[List["ArcCos", "[", FractionBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]], "]"]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]], ")"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]]], "+", FractionBox[RowBox[List["m", " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]], SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.