html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 JacobiDS

 http://functions.wolfram.com/09.30.16.0040.01

 Input Form

 JacobiDS[InverseJacobiNC[z, m], m]^2 == ((m - 1) z^2 - m)/(1 - z^2)

 Standard Form

 Cell[BoxData[RowBox[List[SuperscriptBox[RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["InverseJacobiNC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", "m"]], RowBox[List["1", "-", " ", SuperscriptBox["z", "2"]]]]]]]]

 MathML Form

 ds ( nc - 1 ( z m ) m ) 2 ( m - 1 ) z 2 - m 1 - z 2 JacobiDS InverseJacobiNC z m m 2 m -1 z 2 -1 m 1 -1 z 2 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["InverseJacobiNC", "[", RowBox[List["z_", ",", "m_"]], "]"]], ",", "m_"]], "]"]], "2"], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", "m"]], RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02