Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiND






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiND[z,m] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/09.32.06.0001.02









  


  










Input Form





JacobiND[z, m] \[Proportional] 1 + (m z^2)/2 + (1/24) (-4 m + 5 m^2) z^4 + (1/720) (16 m - 76 m^2 + 61 m^3) z^6 + ((-64 m + 1104 m^2 - 2424 m^3 + 1385 m^4) z^8)/40320 + ((256 m - 16832 m^2 + 79728 m^3 - 113672 m^4 + 50521 m^5) z^10)/3628800 + O[z^12]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["JacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List["1", "+", FractionBox[RowBox[List["m", " ", SuperscriptBox["z", "2"]]], "2"], "+", RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["5", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List[FractionBox["1", "720"], " ", RowBox[List["(", RowBox[List[RowBox[List["16", " ", "m"]], "-", RowBox[List["76", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["61", " ", SuperscriptBox["m", "3"]]]]], ")"]], " ", SuperscriptBox["z", "6"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "64"]], " ", "m"]], "+", RowBox[List["1104", " ", SuperscriptBox["m", "2"]]], "-", RowBox[List["2424", " ", SuperscriptBox["m", "3"]]], "+", RowBox[List["1385", " ", SuperscriptBox["m", "4"]]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "40320"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["256", " ", "m"]], "-", RowBox[List["16832", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["79728", " ", SuperscriptBox["m", "3"]]], "-", RowBox[List["113672", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["50521", " ", SuperscriptBox["m", "5"]]]]], ")"]], " ", SuperscriptBox["z", "10"]]], "3628800"], "+", RowBox[List["O", "[", SuperscriptBox["z", "12"], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> nd </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 24 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 720 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 76 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 61 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 64 </mn> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 1104 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2424 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1385 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mn> 40320 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 16832 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 79728 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 113672 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 50521 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 5 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mn> 3628800 </mn> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> JacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 24 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 720 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 76 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 61 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -64 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 1104 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2424 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1385 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 40320 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16832 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 79728 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 113672 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 50521 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> <apply> <power /> <cn type='integer'> 3628800 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiND", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["1", "+", FractionBox[RowBox[List["m", " ", SuperscriptBox["z", "2"]]], "2"], "+", RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["5", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List[FractionBox["1", "720"], " ", RowBox[List["(", RowBox[List[RowBox[List["16", " ", "m"]], "-", RowBox[List["76", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["61", " ", SuperscriptBox["m", "3"]]]]], ")"]], " ", SuperscriptBox["z", "6"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "64"]], " ", "m"]], "+", RowBox[List["1104", " ", SuperscriptBox["m", "2"]]], "-", RowBox[List["2424", " ", SuperscriptBox["m", "3"]]], "+", RowBox[List["1385", " ", SuperscriptBox["m", "4"]]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "40320"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["256", " ", "m"]], "-", RowBox[List["16832", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["79728", " ", SuperscriptBox["m", "3"]]], "-", RowBox[List["113672", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["50521", " ", SuperscriptBox["m", "5"]]]]], ")"]], " ", SuperscriptBox["z", "10"]]], "3628800"], "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "12"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.