Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ModularLambda






Mathematica Notation

Traditional Notation









Elliptic Functions > ModularLambda[z] > Series representations > Generalized power series > Expansions at z==infinity





http://functions.wolfram.com/09.51.06.0006.01









  


  










Input Form





ModularLambda[z] \[Proportional] 16 E^(I Pi z) - 128 E^(2 I Pi z) + 704 E^(3 I Pi z) - 3072 E^(4 I Pi z) + 11488 E^(5 I Pi z) - 38400 E^(6 I Pi z) + 117632 E^(7 I Pi z) - 335872 E^(8 I Pi z) + 904784 E^(9 I Pi z) - 2320128 E^(10 I Pi z) + 5702208 E^(11 I Pi z) - 13504512 E^(12 I Pi z) + 30952544 E^(13 I Pi z) - 68901888 E^(14 I Pi z) + 149403264 E^(15 I Pi z) - 316342272 E^(16 I Pi z) + 655445792 E^(17 I Pi z) - 1331327616 E^(18 I Pi z) + 2655115712 E^(19 I Pi z) - 5206288384 E^(20 I Pi z) + O[E^(21 I Pi z)] /; Im[z] > 0 && (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ModularLambda", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["16", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["128", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["704", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["3072", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["11488", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["5", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["38400", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["6", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["117632", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["7", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["335872", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["904784", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["9", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["2320128", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["10", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["5702208", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["11", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["13504512", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["12", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["30952544", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["13", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["68901888", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["14", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["149403264", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["15", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["316342272", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["16", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["655445792", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["17", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["1331327616", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["18", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["2655115712", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["19", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["5206288384", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["20", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["O", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["21", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 704 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3072 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11488 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 38400 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 117632 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 335872 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 904784 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2320128 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5702208 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13504512 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 30952544 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 13 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 68901888 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 14 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 149403264 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 316342272 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 655445792 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 17 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1331327616 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2655115712 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 19 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5206288384 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 21 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 704 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3072 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11488 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 5 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 38400 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 6 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 117632 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 7 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 335872 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 904784 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 9 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2320128 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 10 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5702208 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 11 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13504512 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 12 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 30952544 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 13 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 68901888 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 14 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 149403264 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 15 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 316342272 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 16 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 655445792 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 17 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1331327616 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 18 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2655115712 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 19 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5206288384 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 20 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 21 </cn> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ModularLambda", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["16", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["128", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["704", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["3072", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["11488", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["5", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["38400", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["6", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["117632", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["7", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["335872", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["904784", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["9", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["2320128", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["10", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["5702208", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["11", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["13504512", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["12", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["30952544", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["13", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["68901888", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["14", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["149403264", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["15", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["316342272", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["16", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["655445792", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["17", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["1331327616", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["18", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", RowBox[List["2655115712", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["19", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "-", RowBox[List["5206288384", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["20", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", "\[ExponentialE]", "]"]], RowBox[List["21", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.