Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











NevilleThetaS






Mathematica Notation

Traditional Notation









Elliptic Functions > NevilleThetaS[z,m] > Primary definition





http://functions.wolfram.com/09.12.02.0001.01









  


  










Input Form





NevilleThetaS[z, m] == ((Sqrt[2 Pi] EllipticNomeQ[m]^(1/4))/ ((1 - m)^(1/4) m^(1/4) Sqrt[EllipticK[m]])) Sum[(-1)^k EllipticNomeQ[m]^(k (k + 1)) Sin[((2 k + 1) Pi z)/(2 EllipticK[m])], {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["NevilleThetaS", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["1", "/", "4"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["m", RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["EllipticK", "[", "m", "]"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], RowBox[List["Sin", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "z"]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> &#977; </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mroot> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </mroot> </mrow> <mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mi> m </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> NevilleThetaS </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["NevilleThetaS", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "z"]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]]]]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["m", RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["EllipticK", "[", "m", "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.