Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassInvariants






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassInvariants[{w1,w3}] > Representations through equivalent functions > With related functions > Involving theta functions





http://functions.wolfram.com/09.19.27.0010.01









  


  










Input Form





Last[WeierstrassInvariants[{Subscript[\[Omega], 1], Subscript[\[Omega], 3]}]] == (Pi/(2 Subscript[\[Omega], 1]))^6 ((8/27) (EllipticTheta[2, 0, q]^12 + EllipticTheta[3, 0, q]^12) - (4/9) (EllipticTheta[2, 0, q]^4 + EllipticTheta[3, 0, q]^4) EllipticTheta[2, 0, q]^4 EllipticTheta[3, 0, q]^4) /; \[Tau] == Subscript[\[Omega], 3]/Subscript[\[Omega], 1] && q == E^(\[Tau] Pi I)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Last", "[", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], ")"]], "6"], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["8", "27"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "12"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "12"]]], ")"]]]], "-", RowBox[List[FractionBox["4", "9"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "4"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "4"], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["\[Tau]", "\[Equal]", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]]]], "\[And]", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Tau]", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 8 </mn> <mn> 27 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 12 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 12 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 9 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#964; </mi> <mo> &#10869; </mo> <mfrac> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#10869; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#964; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 8 <sep /> 27 </cn> <apply> <plus /> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 12 </cn> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 4 <sep /> 9 </cn> <apply> <plus /> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> &#964; </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> q </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> &#964; </ci> <pi /> <imaginaryi /> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Last", "[", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]_", "1"], ",", SubscriptBox["\[Omega]_", "3"]]], "}"]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", RowBox[List["2", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]]], ")"]], "6"], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["8", "27"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "12"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "12"]]], ")"]]]], "-", RowBox[List[FractionBox["4", "9"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "4"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "4"], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["\[Tau]", "\[Equal]", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]\[Omega]", "1"]]]], "&&", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Tau]", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.