Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassP[z,{g2,g3}] > Specific values > Specialized values > For fixed {g2,g3} > Values at quarter-periods





http://functions.wolfram.com/09.13.03.0003.01









  


  










Input Form





WeierstrassP[Subscript[\[Omega], i]/2, {Subscript[g, 2], Subscript[g, 3]}] == Subscript[e, i] + Subscript[\[Epsilon], i, j] Subscript[\[Epsilon], i, k] Sqrt[Subscript[e, i] - Subscript[e, j]] Sqrt[Subscript[e, i] - Subscript[e, k]] /; Element[{i, j, k}, {1, 2, 3}] && i != j != k && Subscript[\[Epsilon], \[Alpha], \[Beta]] == Sign[Pi/2 - Abs[Arg[WeierstrassSigma[\[Beta], Subscript[\[Omega], \[Alpha]], {Subscript[g, 2], Subscript[g, 3]}]/ WeierstrassSigma[Subscript[\[Omega], \[Alpha]], {Subscript[g, 2], Subscript[g, 3]}]]]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "i"], "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[SubscriptBox["e", "i"], "+", RowBox[List[SubscriptBox["\[Epsilon]", RowBox[List["i", ",", "j"]]], " ", SubscriptBox["\[Epsilon]", RowBox[List["i", ",", "k"]]], " ", SqrtBox[RowBox[List[SubscriptBox["e", "i"], "-", SubscriptBox["e", "j"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["e", "i"], "-", SubscriptBox["e", "k"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["i", ",", "j", ",", "k"]], "}"]], "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]], "\[And]", RowBox[List["i", "\[NotEqual]", "j", "\[NotEqual]", "k"]], "\[And]", RowBox[List[SubscriptBox["\[Epsilon]", RowBox[List["\[Alpha]", ",", "\[Beta]"]]], "\[Equal]", RowBox[List["Sign", "[", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["Abs", "[", RowBox[List["Arg", "[", FractionBox[RowBox[List["WeierstrassSigma", "[", RowBox[List["\[Beta]", ",", SubscriptBox["\[Omega]", "\[Alpha]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["\[Omega]", "\[Alpha]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]], "]"]], "]"]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <msub> <mi> &#969; </mi> <mi> i </mi> </msub> <mn> 2 </mn> </mfrac> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msub> <mi> e </mi> <mi> i </mi> </msub> <mo> + </mo> <mrow> <msub> <mi> &#1013; </mi> <mrow> <mi> i </mi> <mo> , </mo> <mi> j </mi> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> &#1013; </mi> <mrow> <mi> i </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> e </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> e </mi> <mi> j </mi> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> e </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> e </mi> <mi> k </mi> </msub> </mrow> </msqrt> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> } </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> i </mi> <mo> &#8800; </mo> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> &#1013; </mi> <mrow> <mi> &#945; </mi> <mo> , </mo> <mi> &#946; </mi> </mrow> </msub> <mo> &#10869; </mo> <mrow> <mi> sgn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <msub> <mi> &#963; </mi> <mi> &#946; </mi> </msub> <mo> ( </mo> <mrow> <mrow> <semantics> <msub> <mi> &#969; </mi> <mi> &#945; </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[&quot;\[Omega]&quot;, &quot;\[Alpha]&quot;], Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> , </mo> <semantics> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mi> &#945; </mi> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;\[Omega]&quot;, &quot;\[Alpha]&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mfrac> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> WeierstrassP </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> i </ci> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#1013; </ci> <ci> i </ci> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> &#1013; </ci> <ci> i </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> j </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> k </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <list> <ci> i </ci> <ci> j </ci> <ci> k </ci> </list> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </list> </apply> <apply> <neq /> <ci> i </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> &#1013; </ci> <ci> &#945; </ci> <ci> &#946; </ci> </apply> <apply> <ci> Sign </ci> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <apply> <arg /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> &#963; </ci> <ci> &#946; </ci> </apply> <apply> <ci> CompoundExpression </ci> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> &#945; </ci> </apply> </apply> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> WeierstrassSigma </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> &#945; </ci> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox[SubscriptBox["\[Omega]_", "i_"], "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["e", "i"], "+", RowBox[List[SubscriptBox["\[Epsilon]", RowBox[List["i", ",", "j"]]], " ", SubscriptBox["\[Epsilon]", RowBox[List["i", ",", "k"]]], " ", SqrtBox[RowBox[List[SubscriptBox["e", "i"], "-", SubscriptBox["e", "j"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["e", "i"], "-", SubscriptBox["e", "k"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["i", ",", "j", ",", "k"]], "}"]], "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]], "&&", RowBox[List["i", "\[NotEqual]", "j", "\[NotEqual]", "k"]], "&&", RowBox[List[SubscriptBox["\[Epsilon]", RowBox[List["\[Alpha]", ",", "\[Beta]"]]], "\[Equal]", RowBox[List["Sign", "[", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["Abs", "[", RowBox[List["Arg", "[", FractionBox[RowBox[List["WeierstrassSigma", "[", RowBox[List["\[Beta]", ",", SubscriptBox["\[Omega]", "\[Alpha]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["\[Omega]", "\[Alpha]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]], "]"]], "]"]]]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.