Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassP[z,{g2,g3}] > Differentiation > Fractional integro-differentiation > With respect to z





http://functions.wolfram.com/09.13.20.0011.01









  


  










Input Form





D[WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}], {z, \[Alpha]}] == FDPowerConstant[z, -2, \[Alpha]] z^(-\[Alpha] - 2) + 2 z^(1 - \[Alpha]) Sum[If[{m, n} == {0, 0}, 0, Hypergeometric2F1Regularized[1, 3, 2 - \[Alpha], z/(2 m Subscript[\[Omega], 1] + 2 n Subscript[\[Omega], 3])]/ (2 m Subscript[\[Omega], 1] + 2 n Subscript[\[Omega], 3])^3], {m, -Infinity, Infinity}, {n, -Infinity, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "2"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "2"]]]]], "+", RowBox[List["2", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "3", ",", RowBox[List["2", "-", "\[Alpha]"]], ",", FractionBox["z", RowBox[List[RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]]]]], "]"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "3"]]]]], "]"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <munder> <mrow> <mi> m </mi> <mo> , </mo> <mtext> </mtext> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8800; </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </munder> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> &#215; </mo> <mtext> &#62371; </mtext> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mfrac> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;3&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;z&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot;m&quot;, &quot; &quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;1&quot;]]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot;n&quot;, &quot; &quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;3&quot;]]]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> &#8706; </ms> <ms> &#945; </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#8472; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> ; </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 3 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#8706; </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> &#945; </ms> </apply> </list> </apply> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> &#8497;&#119966; </ms> <ms> exp </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> &#945; </ms> <ms> ) </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 2 </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#945; </ms> </list> </apply> <ms> - </ms> <ms> 2 </ms> </list> </apply> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#945; </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#8734; </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <ms> n </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> &#8800; </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> , </ms> <ms> 0 </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> </apply> <ms> &#8734; </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <apply> <ci> SubscriptBox </ci> <ms> &#969; </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> SubscriptBox </ci> <ms> &#969; </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 3 </ms> </apply> </apply> <ms> &#215; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#62387; </ms> <apply> <ci> FormBox </ci> <ms> 2 </ms> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> FormBox </ci> <ms> 1 </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> 3 </ms> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> - </ms> <ms> &#945; </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <ms> </ms> <apply> <ci> SubscriptBox </ci> <ms> &#969; </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <ms> </ms> <apply> <ci> SubscriptBox </ci> <ms> &#969; </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "2"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "2"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "3", ",", RowBox[List["2", "-", "\[Alpha]"]], ",", FractionBox["z", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "3"]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.