Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassP[z,{g2,g3}] > Integration > Indefinite integration > Involving functions of the direct function > Involving elementary functions of the direct function > Involving rational functions of the direct function





http://functions.wolfram.com/09.13.21.0003.01









  


  










Input Form





Integrate[(a WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] + b)/ (c WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] + d), z] == (a z)/c - ((a d - b c)/(c^2 WeierstrassPPrime[\[Nu], {Subscript[g, 2], Subscript[g, 3]}])) (Log[WeierstrassSigma[z + \[Nu], {Subscript[g, 2], Subscript[g, 3]}]] - Log[WeierstrassSigma[z - \[Nu], {Subscript[g, 2], Subscript[g, 3]}]] - 2 z WeierstrassZeta[\[Nu], {Subscript[g, 2], Subscript[g, 3]}]) /; WeierstrassP[\[Nu], {Subscript[g, 2], Subscript[g, 3]}] == -(d/c)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["a", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", "b"]], RowBox[List[RowBox[List["c", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", "d"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["a", " ", "z"]], "c"], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["a", " ", "d"]], "-", RowBox[List["b", " ", "c"]]]], RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["\[Nu]", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "+", "\[Nu]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "-", "\[Nu]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "]"]], "-", RowBox[List["2", "z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["\[Nu]", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List["\[Nu]", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List["-", FractionBox["d", "c"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mi> c </mi> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;\[Nu]&quot;]], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;\[Nu]&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mi> d </mi> <mi> c </mi> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <ci> &#957; </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> WeierstrassSigma </ci> <apply> <plus /> <ci> z </ci> <ci> &#957; </ci> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <ci> WeierstrassSigma </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ci> WeierstrassZeta </ci> <ci> &#957; </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> WeierstrassP </ci> <ci> &#957; </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["a_", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "+", "b_"]], RowBox[List[RowBox[List["c_", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "+", "d_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List["a", " ", "z"]], "c"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["a", " ", "d"]], "-", RowBox[List["b", " ", "c"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "+", "\[Nu]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "-", "\[Nu]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "]"]], "-", RowBox[List["2", " ", "z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["\[Nu]", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["\[Nu]", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List["\[Nu]", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List["-", FractionBox["d", "c"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.