Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassPPrime






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassPPrime[z,{g2,g3}] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/09.14.06.0001.01









  


  










Input Form





WeierstrassPPrime[z, {Subscript[g, 2], Subscript[g, 3]}] == -(2/z^3) + Sum[(2 k - 2) Subscript[a, k] z^(2 k - 3), {k, 2, Infinity}] /; Subscript[a, 2] == Subscript[g, 2]/20 && Subscript[a, 3] == Subscript[g, 3]/28 && Subscript[a, k] == (3/((2 k + 1) (k - 3))) Sum[Subscript[a, l] Subscript[a, k - l], {l, 2, k - 2}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["2", SuperscriptBox["z", "3"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", "2"]], ")"]], SubscriptBox["a", "k"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "3"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "\[Equal]", FractionBox[SubscriptBox["g", "2"], "20"]]], "\[And]", RowBox[List[SubscriptBox["a", "3"], "\[Equal]", FractionBox[SubscriptBox["g", "3"], "28"]]], "\[And]", RowBox[List[SubscriptBox["a", "k"], "\[Equal]", RowBox[List[FractionBox[RowBox[List["3", " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "3"]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "2"]], RowBox[List["k", "-", "2"]]], RowBox[List[SubscriptBox["a", "l"], " ", SubscriptBox["a", RowBox[List["k", "-", "l"]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 2 </mn> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mfrac> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mn> 20 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> &#10869; </mo> <mfrac> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mn> 28 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> l </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <msub> <mi> a </mi> <mi> l </mi> </msub> <mo> &#8290; </mo> <msub> <mi> a </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> l </mi> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 20 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 28 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> l </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> l </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> l </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["2", SuperscriptBox["z", "3"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "2"]], ")"]], " ", SubscriptBox["a", "k"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "3"]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "\[Equal]", FractionBox[SubscriptBox["g", "2"], "20"]]], "&&", RowBox[List[SubscriptBox["a", "3"], "\[Equal]", FractionBox[SubscriptBox["g", "3"], "28"]]], "&&", RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox[RowBox[List["3", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "2"]], RowBox[List["k", "-", "2"]]], RowBox[List[SubscriptBox["a", "l"], " ", SubscriptBox["a", RowBox[List["k", "-", "l"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "3"]], ")"]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.