Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassZeta






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassZeta[z,{g2,g3}] > Representations through equivalent functions > With related functions > Involving elliptic integrals and modular functions





http://functions.wolfram.com/09.17.27.0009.01









  


  










Input Form





{WeierstrassZeta[Subscript[\[Omega], 1], {Subscript[g, 2], Subscript[g, 3]}], WeierstrassZeta[Subscript[\[Omega], 3], {Subscript[g, 2], Subscript[g, 3]}]} == {Sqrt[Subscript[e, 1] - Subscript[e, 3]] (EllipticE[m] - (Subscript[e, 1]/(Subscript[e, 1] - Subscript[e, 3])) EllipticK[m]), (-I) Sqrt[Subscript[e, 1] - Subscript[e, 3]] (EllipticE[1 - m] + (Subscript[e, 3]/(Subscript[e, 1] - Subscript[e, 3])) EllipticK[1 - m])} /; m == InverseEllipticNomeQ[q] && {Subscript[e, 1], Subscript[e, 2], Subscript[e, 3]} == WeierstrassPHalfPeriodValues[{Subscript[g, 2], Subscript[g, 3]}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List[SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], "-", RowBox[List[FractionBox[SubscriptBox["e", "1"], RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]], ")"]]]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List["1", "-", "m"]], "]"]], "+", RowBox[List[FractionBox[RowBox[List[SubscriptBox["e", "3"], " "]], RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]], " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]], ")"]]]]]], "}"]]]], "/;", RowBox[List[RowBox[List["m", "\[Equal]", RowBox[List["InverseEllipticNomeQ", "[", "q", "]"]]]], "\[And]", RowBox[List[RowBox[List["{", RowBox[List[StyleBox[SubscriptBox["e", "1"], Rule[ScriptLevel, 0]], StyleBox[",", Rule[ScriptLevel, 0]], StyleBox[SubscriptBox["e", "2"], Rule[ScriptLevel, 0]], ",", StyleBox[SubscriptBox["e", "3"], Rule[ScriptLevel, 0]]]], StyleBox["}", Rule[ScriptLevel, 0]]]], "\[Equal]", RowBox[List["WeierstrassPHalfPeriodValues", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;\[Omega]&quot;, &quot;1&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> , </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;\[Omega]&quot;, &quot;3&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mo> } </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <msqrt> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mtext> </mtext> </mrow> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#10869; </mo> <mrow> <msup> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 1 </mn> </msub> </mstyle> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mstyle> <mo> , </mo> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> , </mo> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mstyle> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;\[Omega]&quot;, &quot;1&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> , </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;\[Omega]&quot;, &quot;3&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mo> } </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <msqrt> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mtext> </mtext> </mrow> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#10869; </mo> <mrow> <msup> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 1 </mn> </msub> </mstyle> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mstyle> <mo> , </mo> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> , </mo> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mstyle> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["{", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]_", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]_", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "}"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], "-", FractionBox[RowBox[List[SubscriptBox["e", "1"], " ", RowBox[List["EllipticK", "[", "m", "]"]]]], RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]]]], ")"]]]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List["1", "-", "m"]], "]"]], "+", FractionBox[RowBox[List[SubscriptBox["e", "3"], " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]], RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]]]], ")"]]]]]], "}"]], "/;", RowBox[List[RowBox[List["m", "\[Equal]", RowBox[List["InverseEllipticNomeQ", "[", "q", "]"]]]], "&&", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["e", "1"], ",", SubscriptBox["e", "2"], ",", SubscriptBox["e", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassPHalfPeriodValues", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.