Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticE






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticE[z] > Series representations > Generalized power series > Expansions at z==infinity > For the function itself





http://functions.wolfram.com/08.01.06.0030.01









  


  










Input Form





EllipticE[z] \[Proportional] Sqrt[-z] + (Log[-z]/(4 Sqrt[-z])) (1 + 1/(8 z) + 3/(64 z^2) + O[1/z^3]) + (1/Sqrt[-z]) (1/4 + Log[2] + (-3 + 8 Log[2])/(64 z) + (-3 + 6 Log[2])/(128 z^2) + O[1/z^3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["EllipticE", "[", "z", "]"]], "\[Proportional]", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], "+", RowBox[List[FractionBox[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], RowBox[List[" ", RowBox[List["4", SqrtBox[RowBox[List["-", "z"]]]]]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox["1", RowBox[List["8", " ", "z"]]], "+", FractionBox["3", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "3"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[" ", SqrtBox[RowBox[List["-", "z"]]]]]], RowBox[List["(", RowBox[List[FractionBox["1", "4"], "+", RowBox[List["Log", "[", "2", "]"]], "+", FractionBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["8", RowBox[List["Log", "[", "2", "]"]]]]]], RowBox[List["64", " ", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["6", RowBox[List["Log", "[", "2", "]"]]]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "3"]], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> EllipticE </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticE", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["1", RowBox[List["8", " ", "z"]]], "+", FractionBox["3", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "3"]], "]"]]]], ")"]]]], RowBox[List["4", " ", SqrtBox[RowBox[List["-", "z"]]]]]], "+", FractionBox[RowBox[List[FractionBox["1", "4"], "+", RowBox[List["Log", "[", "2", "]"]], "+", FractionBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", "2", "]"]]]]]], RowBox[List["64", " ", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", "2", "]"]]]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "3"]], "]"]]]], SqrtBox[RowBox[List["-", "z"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.