Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticE






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticE[z,m] > Series representations > Other series representations > Expansions E(sin-1(z)|m) at z==infinity





http://functions.wolfram.com/08.04.06.0083.01









  


  










Input Form





EllipticE[ArcSin[z], m] \[Proportional] (m z Sqrt[-z^2])/Sqrt[(-m) z^2] + ((Sqrt[-z^2] Sqrt[-m])/(2 z)) ((((I Sqrt[-z^2])/Sqrt[z^2]) (Sqrt[1/m] - 1/Sqrt[m]) - Sqrt[1/m] - 1/Sqrt[m]) EllipticE[m] + 2 EllipticE[1/m] + 2 ((1 - m)/m) EllipticK[1/m] + 2 I (1 - Sqrt[m/(m - 1)] Sqrt[(m - 1)/m]) (-EllipticE[1 - 1/m] + (1/m) EllipticK[1 - 1/m])) + (((1 - m) Sqrt[-z^2])/(2 z Sqrt[(-m) z^2])) (1 - (-7 + 2 m - 3 m^2)/(12 (-1 + m) m z^2) + (21 - 11 m - 9 m^2 + 15 m^3)/ (120 (-1 + m) m^2 z^4) + O[1/z^6])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", "m"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["m", " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]]]], "+", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], SqrtBox[RowBox[List["-", "m"]]]]], RowBox[List["2", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], SqrtBox[SuperscriptBox["z", "2"]]], RowBox[List["(", RowBox[List[SqrtBox[FractionBox["1", "m"]], "-", FractionBox["1", SqrtBox["m"]]]], ")"]]]], "-", SqrtBox[FractionBox["1", "m"]], "-", FractionBox["1", SqrtBox["m"]]]], ")"]], RowBox[List["EllipticE", "[", "m", "]"]]]], "+", RowBox[List["2", RowBox[List["EllipticE", "[", FractionBox["1", "m"], "]"]]]], "+", RowBox[List["2", FractionBox[RowBox[List["1", "-", "m"]], "m"], " ", RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]]]], "+", RowBox[List["2", "\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox["m", RowBox[List["m", "-", "1"]]]], SqrtBox[FractionBox[RowBox[List["m", "-", "1"]], "m"]]]]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["EllipticE", "[", RowBox[List["1", "-", FractionBox["1", "m"]]], "]"]]]], "+", RowBox[List[FractionBox["1", "m"], " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", FractionBox["1", "m"]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]]]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["2", " ", "m"]], "-", RowBox[List["3", " ", SuperscriptBox["m", "2"]]]]], RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["21", "-", RowBox[List["11", " ", "m"]], "-", RowBox[List["9", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["m", "3"]]]]], RowBox[List["120", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["m", "2"], " ", SuperscriptBox["z", "4"]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "6"]], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </msqrt> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> m </mi> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msqrt> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </msqrt> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> m </mi> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mfrac> <mi> m </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> m </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mrow> <mn> 120 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> EllipticE </ci> <apply> <arcsin /> <ci> z </ci> </apply> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <ci> m </ci> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 21 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["ArcSin", "[", "z_", "]"]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["m", " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List["-", "m"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SqrtBox[FractionBox["1", "m"]], "-", FractionBox["1", SqrtBox["m"]]]], ")"]]]], SqrtBox[SuperscriptBox["z", "2"]]], "-", SqrtBox[FractionBox["1", "m"]], "-", FractionBox["1", SqrtBox["m"]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["EllipticE", "[", FractionBox["1", "m"], "]"]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]]]], "m"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox["m", RowBox[List["m", "-", "1"]]]], " ", SqrtBox[FractionBox[RowBox[List["m", "-", "1"]], "m"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["EllipticE", "[", RowBox[List["1", "-", FractionBox["1", "m"]]], "]"]]]], "+", FractionBox[RowBox[List["EllipticK", "[", RowBox[List["1", "-", FractionBox["1", "m"]]], "]"]], "m"]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["2", " ", "m"]], "-", RowBox[List["3", " ", SuperscriptBox["m", "2"]]]]], RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["21", "-", RowBox[List["11", " ", "m"]], "-", RowBox[List["9", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["m", "3"]]]]], RowBox[List["120", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["m", "2"], " ", SuperscriptBox["z", "4"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "6"]], "]"]]]], ")"]]]], RowBox[List["2", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.