html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 EllipticF

 http://functions.wolfram.com/08.05.06.0045.01

 Input Form

 EllipticF[z, m] == (-(1/Sqrt[m])) EllipticK[1/m] (I Sqrt[-(1/(z - Subscript[z, 0])^2)] (z - Subscript[z, 0]) + Sqrt[(z - Subscript[z, 0])^2]/(z - Subscript[z, 0])) + EllipticK[m] (2 Round[Re[Subscript[z, 0]]/Pi] + Sqrt[-(I/(z - Subscript[z, 0]))] Sqrt[I (z - Subscript[z, 0])] + I Sqrt[-(1/(z - Subscript[z, 0])^2)] (z - Subscript[z, 0]) + Sqrt[(z - Subscript[z, 0])^2]/(z - Subscript[z, 0])) + (z - Subscript[z, 0])/Sqrt[1 - m] + (1/Sqrt[1 - m]) Sum[((I^(k - 1) Binomial[k - 1/2, k - 1])/k!) Sum[((((-1)^q Binomial[k - 1, q])/(2 q + 1)) Sum[Binomial[q, j] (-m)^j (2 - m)^(q - j) 2^(k - j - q - 1) Sum[Binomial[j, i] (2 i - j)^(k - 1) (z - Subscript[z, 0])^k, {i, 0, j}], {j, 0, q}])/(1 - m)^q, {q, 1, k - 1}], {k, 2, Infinity}] /; (z -> Subscript[z, 0]) && Subscript[z, 0] == Pi/2 + 2 Pi u && Element[u, Integers] && Element[m, Reals] && m > 1

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox["m"]]]], RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", FractionBox[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]], RowBox[List["z", "-", SubscriptBox["z", "0"]]]]]], ")"]]]], " ", "+", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", SubscriptBox["z", "0"], "]"]], "\[Pi]"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", RowBox[List["z", "-", SubscriptBox["z", "0"]]]]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", FractionBox[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]], RowBox[List["z", "-", SubscriptBox["z", "0"]]]]]], ")"]]]], "+", FractionBox[RowBox[List["z", "-", SubscriptBox["z", "0"]]], SqrtBox[RowBox[List["1", "-", "m"]]]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["1", "-", "m"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["k", "-", "1"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", FractionBox["1", "2"]]], ",", RowBox[List["k", "-", "1"]]]], "]"]]]], RowBox[List["k", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", "1"]], ",", "q"]], "]"]]]], RowBox[List[RowBox[List["2", " ", "q"]], "+", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["-", "q"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "q"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["q", ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "m"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", "-", "m"]], ")"]], RowBox[List["q", "-", "j"]]], " ", SuperscriptBox["2", RowBox[List["k", "-", "j", "-", "q", "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", "i"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "-", "j"]], ")"]], RowBox[List["k", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]], "\[And]", RowBox[List[SubscriptBox["z", "0"], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "u"]]]]]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "1"]]]]]]]]

 MathML Form

 F ( z m ) ( 2 Re ( z 0 ) π + - z - z 0 ( z - z 0 ) + ( z - z 0 ) 2 z - z 0 + ( z - z 0 ) - 1 ( z - z 0 ) 2 ) K ( m ) - 1 m ( - 1 ( z - z 0 ) 2 ( z - z 0 ) + ( z - z 0 ) 2 z - z 0 ) K ( 1 m ) + z - z 0 1 - m + 1 1 - m k = 2 k - 1 k ! ( k - 1 2 k - 1 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "-", FractionBox["1", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["k", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] q = 1 k - 1 ( - 1 ) q 2 q + 1 ( k - 1 q ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["q", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] ( 1 - m ) - q j = 0 q ( q j ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["q", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] ( - m ) j ( 2 - m ) q - j 2 k - j - q - 1 i = 0 j ( j i ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity, Rule[Editable, True]]], List[TagBox["i", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] ( 2 i - j ) k - 1 ( z - z 0 ) k /; ( z "\[Rule]" z 0 ) z 0 π 2 + 2 π u u TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] m TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] m > 1 F ( z m ) ( 2 Re ( z 0 ) π + - z - z 0 ( z - z 0 ) + ( z - z 0 ) 2 z - z 0 + ( z - z 0 ) - 1 ( z - z 0 ) 2 ) K ( m ) - 1 m ( - 1 ( z - z 0 ) 2 ( z - z 0 ) + ( z - z 0 ) 2 z - z 0 ) K ( 1 m ) + z - z 0 1 - m + 1 1 - m k = 2 k - 1 k ! ( k - 1 2 k - 1 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "-", FractionBox["1", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["k", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] q = 1 k - 1 ( - 1 ) q 2 q + 1 ( k - 1 q ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["q", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] ( 1 - m ) - q j = 0 q ( q j ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["q", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] ( - m ) j ( 2 - m ) q - j 2 k - j - q - 1 i = 0 j ( j i ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity, Rule[Editable, True]]], List[TagBox["i", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] ( 2 i - j ) k - 1 ( z - z 0 ) k /; ( z "\[Rule]" z 0 ) z 0 π 2 + 2 π u u TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] m TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] m > 1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticF", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", FractionBox[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]], RowBox[List["z", "-", SubscriptBox["zz", "0"]]]]]], ")"]]]], SqrtBox["m"]]]], "+", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", SubscriptBox["zz", "0"], "]"]], "\[Pi]"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", RowBox[List["z", "-", SubscriptBox["zz", "0"]]]]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", FractionBox[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]], RowBox[List["z", "-", SubscriptBox["zz", "0"]]]]]], ")"]]]], "+", FractionBox[RowBox[List["z", "-", SubscriptBox["zz", "0"]]], SqrtBox[RowBox[List["1", "-", "m"]]]], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["k", "-", "1"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", FractionBox["1", "2"]]], ",", RowBox[List["k", "-", "1"]]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", "1"]], ",", "q"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["-", "q"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "q"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["q", ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "m"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", "-", "m"]], ")"]], RowBox[List["q", "-", "j"]]], " ", SuperscriptBox["2", RowBox[List["k", "-", "j", "-", "q", "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", "i"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "-", "j"]], ")"]], RowBox[List["k", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]]]]]]]]]], RowBox[List[RowBox[List["2", " ", "q"]], "+", "1"]]]]]]], RowBox[List["k", "!"]]]]], SqrtBox[RowBox[List["1", "-", "m"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]], "&&", RowBox[List[SubscriptBox["zz", "0"], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "u"]]]]]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "1"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02