html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 EllipticF

Connections within the group of incomplete elliptic integrals and with other function groups

The incomplete elliptic integrals , , , and can be represented through more general functions. Through the hypergeometric Appell function of two variables:

Through the generalized hypergeometric function of two variables:

Through elliptic theta functions, for example:

Through inverse Jacobi elliptic functions, for example:

Through Weierstrass elliptic functions and inverse elliptic nome , for example:

Through some elliptic‐type functions, for example:

The incomplete elliptic integrals , , , and can be represented through some related functions, for example:

The incomplete elliptic integral is related to the Jacobi amplitude by the following formulas, which demonstrate that the Jacobi amplitude is within a restricted domain, the inverse function of elliptic integral :

The incomplete elliptic integrals , and can be represented through incomplete elliptic integral by the following formulas: