Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,m] > Series representations > Generalized power series > Expansions at n==1





http://functions.wolfram.com/08.03.06.0022.01









  


  










Input Form





EllipticPi[n, m] \[Proportional] ((Pi (-1)^Floor[1/2 - Arg[1 - m]/(2 Pi) - Arg[(n - m)/(n (1 - m))]/(2 Pi)])/ (2 Sqrt[1 - m])) (1/Sqrt[1 - n]) (1 - (m (n - 1))/(2 (1 - m)) + (3 m^2 (n - 1)^2)/(8 (1 - m)^2) + \[Ellipsis]) + EllipticE[m]/(-1 + m) + EllipticK[m] + (((1 + m) EllipticE[m] + (-1 + m) EllipticK[m])/ (3 (-1 + m)^2)) (n - 1) - (1/(15 (-1 + m)^3)) ((-3 - 7 m + 2 m^2) EllipticE[m] - (-3 + 2 m + m^2) EllipticK[m]) (n - 1)^2 + \[Ellipsis] /; (n -> 1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List["n", "-", "m"]], RowBox[List["n", " ", RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]], RowBox[List["2", SqrtBox[RowBox[List["1", "-", "m"]]], " "]]], FractionBox["1", RowBox[List[SqrtBox[RowBox[List["1", "-", "n"]]], " "]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["m", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]]]]], "+", FractionBox[RowBox[List["3", " ", SuperscriptBox["m", "2"], SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]], RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", FractionBox[RowBox[List["EllipticE", "[", "m", "]"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], "+", RowBox[List["EllipticK", "[", "m", "]"]], "+", RowBox[List[FractionBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "m"]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]], ")"]], RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "2"]]]], RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["15", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["7", " ", "m"]], "+", RowBox[List["2", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "m"]], "+", SuperscriptBox["m", "2"]]], ")"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "1"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mi> m </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mtext> </mtext> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> n </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List["n", "-", "m"]], RowBox[List["n", " ", RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["m", " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]]]]], "+", FractionBox[RowBox[List["3", " ", SuperscriptBox["m", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]], RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "m"]]]]], ")"]], " ", SqrtBox[RowBox[List["1", "-", "n"]]]]]], "+", FractionBox[RowBox[List["EllipticE", "[", "m", "]"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], "+", RowBox[List["EllipticK", "[", "m", "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "m"]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["7", " ", "m"]], "+", RowBox[List["2", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "m"]], "+", SuperscriptBox["m", "2"]]], ")"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]], RowBox[List["15", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "1"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.