Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,m] > Series representations > Generalized power series > Expansions at n==1





http://functions.wolfram.com/08.03.06.0023.01









  


  










Input Form





EllipticPi[n, m] \[Proportional] Pi/(2 Sqrt[1 - m/n] Sqrt[1 - n]) - (1/4) m Pi (Hypergeometric2F1[3/2, 3/2, 2, m] - Hypergeometric2F1[3/2, 5/2, 2, m] (n - 1) + Hypergeometric2F1[3/2, 7/2, 2, m] (n - 1)^2) + O[(n - 1)^3]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[FractionBox["\[Pi]", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox["m", "n"]]]], " ", SqrtBox[RowBox[List["1", "-", "n"]]]]]], "-", RowBox[List[FractionBox["1", "4"], " ", "m", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"], ",", "2", ",", "m"]], "]"]], "-", " ", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["5", "2"], ",", "2", ",", "m"]], "]"]], RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], "+", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["7", "2"], ",", "2", ",", "m"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]]]], ")"]]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "3"], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> m </mi> <mi> n </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mtext> </mtext> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 2 </mn> <mo> ; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;2&quot;, Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;m&quot;, Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> - </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 2 </mn> <mo> ; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;2&quot;, Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;m&quot;, Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 2 </mn> <mo> ; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;2&quot;, Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;m&quot;, Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["\[Pi]", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox["m", "n"]]]], " ", SqrtBox[RowBox[List["1", "-", "n"]]]]]], "-", RowBox[List[FractionBox["1", "4"], " ", "m", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"], ",", "2", ",", "m"]], "]"]], "-", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["5", "2"], ",", "2", ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], "+", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "2"], ",", FractionBox["7", "2"], ",", "2", ",", "m"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]]]], ")"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["n", "-", "1"]], "]"]], "3"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.