Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,m] > Series representations > Generalized power series > Expansions at m==1





http://functions.wolfram.com/08.03.06.0042.01









  


  










Input Form





EllipticPi[n, m] \[Proportional] (1/2) ((-Log[1 - m]) (1/(1 - n)) (1 + ((n + 1) (m - 1))/(4 (n - 1)) - (3 (-3 - 6 n + n^2) (m - 1)^2)/(64 (n - 1)^2) + \[Ellipsis]) + (-4 Log[2] + Sqrt[n] (-Log[1 - Sqrt[n]] + Log[1 + Sqrt[n]]))/(-1 + n) - ((-1 + 2 Log[2] + 2 n Log[2] + Sqrt[n] (Log[1 - Sqrt[n]] - Log[1 + Sqrt[n]]))/(2 (-1 + n)^2)) (m - 1) + (1/(64 (-1 + n)^3)) (21 + 12 n - 5 n^2 + 12 (-3 + (-6 + n) n) Log[2] + 24 Sqrt[n] (-Log[1 - Sqrt[n]] + Log[1 + Sqrt[n]])) (m - 1)^2 + \[Ellipsis]) /; (m -> 1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", " ", RowBox[List["Log", "[", RowBox[List["1", "-", "m"]], "]"]]]], FractionBox["1", RowBox[List["1", "-", "n"]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["2", "n", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "2"]]]], RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "3"]]]], RowBox[List["(", RowBox[List["21", "+", RowBox[List["12", " ", "n"]], "-", RowBox[List["5", " ", SuperscriptBox["n", "2"]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", "n"]], ")"]], " ", "n"]]]], ")"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["24", " ", SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "1"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -5 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <plus /> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -6 </cn> </apply> <ci> n </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 21 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "m"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["1", "-", "n"]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["21", "+", RowBox[List["12", " ", "n"]], "-", RowBox[List["5", " ", SuperscriptBox["n", "2"]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", "n"]], ")"]], " ", "n"]]]], ")"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["24", " ", SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "3"]]]], "+", "\[Ellipsis]"]], ")"]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "1"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.