Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > General characteristics > Branch cuts > With respect to z > Formulas on real axis for real m, n > For n<1< m





http://functions.wolfram.com/08.06.04.0027.01









  


  










Input Form





Limit[EllipticPi[n, x - I \[Epsilon], m], \[Epsilon] -> Plus[0]] == -EllipticPi[n, x, m] - (2/Sqrt[m]) EllipticPi[n/m, 1/m] + 4 (Floor[x/Pi - 1/2] + 1) EllipticPi[n, m] /; Element[x, Reals] && Element[m, Reals] && Element[n, Reals] && n < 1 < m && Pi/2 + Pi k < x < Pi (k + 1) - ArcCsc[Sqrt[m]] && Element[k, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]], ",", "m"]], "]"]], ",", RowBox[List["\[Epsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "x", ",", "m"]], "]"]]]], "-", RowBox[List[FractionBox["2", SqrtBox["m"]], RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["n", "m"], ",", FractionBox["1", "m"]]], "]"]]]], "+", RowBox[List["4", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox["x", "\[Pi]"], "-", FractionBox["1", "2"]]], "]"]], "+", "1"]], ")"]], RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]]], "/;", " ", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "<", "1", "<", "m"]], "\[And]", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], "<", "x", "<", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]], "-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> &#1013; </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mrow> <mo> + </mo> <mn> 0 </mn> </mrow> </mrow> </munder> <mo> &#8290; </mo> <mtext> &#8201; </mtext> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#1013; </mi> </mrow> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mtext> </mtext> </mrow> <msqrt> <mi> m </mi> </msqrt> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> n </mi> <mi> m </mi> </mfrac> <mo> &#10072; </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mi> x </mi> <mi> &#960; </mi> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> x </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &lt; </mo> <mn> 1 </mn> <mo> &lt; </mo> <mi> m </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &lt; </mo> <mi> x </mi> <mo> &lt; </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <limit /> <bvar> <ci> &#1013; </ci> </bvar> <condition> <apply> <tendsto /> <ci> &#1013; </ci> <apply> <plus /> <cn type='integer'> 0 </cn> </apply> </apply> </condition> <apply> <ci> EllipticPi </ci> <ci> n </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> &#1013; </ci> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <apply> <times /> <ci> x </ci> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> x </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <in /> <ci> m </ci> <reals /> </apply> <apply> <in /> <ci> n </ci> <reals /> </apply> <apply> <lt /> <ci> n </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> <apply> <lt /> <apply> <plus /> <apply> <times /> <pi /> <ci> k </ci> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> x </ci> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arccsc /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", RowBox[List["x_", "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]_"]]]], ",", "m_"]], "]"]], ",", RowBox[List["\[Epsilon]_", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "x", ",", "m"]], "]"]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["n", "m"], ",", FractionBox["1", "m"]]], "]"]]]], SqrtBox["m"]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox["x", "\[Pi]"], "-", FractionBox["1", "2"]]], "]"]], "+", "1"]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["n", "<", "1", "<", "m"]], "&&", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], "<", "x", "<", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]], "-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.