Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/08.06.06.0003.01









  


  










Input Form





EllipticPi[n, z, m] \[Proportional] z + ((m + 2 n)/6) z^3 + (1/120) (9 m^2 + 4 (m + 2 n) (3 n - 1)) z^5 + (1/5040) (225 m^3 + 90 m^2 (3 n - 2) + 8 (m + 2 n) (2 - 30 n + 45 n^2)) z^7 + (1/362880) (11025 m^4 + 12600 m^3 (n - 1) + 3024 m^2 (1 - 5 n + 5 n^2) + 64 (m + 2 n) (-1 + 63 n - 315 n^2 + 315 n^3)) z^9 + O[z^11] /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List["z", "+", RowBox[List[FractionBox[RowBox[List["m", "+", RowBox[List["2", " ", "n"]]]], "6"], SuperscriptBox["z", "3"]]], "+", RowBox[List[FractionBox["1", "120"], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["m", "+", RowBox[List["2", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "n"]], "-", "1"]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "5"]]], "+", RowBox[List[FractionBox["1", "5040"], RowBox[List["(", RowBox[List[RowBox[List["225", " ", SuperscriptBox["m", "3"]]], "+", RowBox[List["90", " ", SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "n"]], "-", "2"]], ")"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["m", "+", RowBox[List["2", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["30", " ", "n"]], "+", RowBox[List["45", " ", SuperscriptBox["n", "2"]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "7"]]], "+", RowBox[List[FractionBox["1", "362880"], RowBox[List["(", RowBox[List[RowBox[List["11025", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["12600", " ", SuperscriptBox["m", "3"], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], "+", RowBox[List["3024", " ", SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["5", " ", "n"]], "+", RowBox[List["5", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], "+", RowBox[List["64", " ", RowBox[List["(", RowBox[List["m", "+", RowBox[List["2", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["63", " ", "n"]], "-", RowBox[List["315", " ", SuperscriptBox["n", "2"]]], "+", RowBox[List["315", " ", SuperscriptBox["n", "3"]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["O", "[", SuperscriptBox["z", "11"], "]"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 120 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 5040 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 225 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 90 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 362880 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11025 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12600 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3024 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mrow> <mn> 63 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mrow> <mn> 315 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 315 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 120 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 5040 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 90 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 362880 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 11025 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12600 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3024 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 63 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 315 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 315 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["z", "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["m", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List[FractionBox["1", "120"], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["m", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "n"]], "-", "1"]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "5"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["225", " ", SuperscriptBox["m", "3"]]], "+", RowBox[List["90", " ", SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "n"]], "-", "2"]], ")"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["m", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["30", " ", "n"]], "+", RowBox[List["45", " ", SuperscriptBox["n", "2"]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "7"]]], "5040"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["11025", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["12600", " ", SuperscriptBox["m", "3"], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], "+", RowBox[List["3024", " ", SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["5", " ", "n"]], "+", RowBox[List["5", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], "+", RowBox[List["64", " ", RowBox[List["(", RowBox[List["m", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["63", " ", "n"]], "-", RowBox[List["315", " ", SuperscriptBox["n", "2"]]], "+", RowBox[List["315", " ", SuperscriptBox["n", "3"]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "9"]]], "362880"], "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "11"]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.