Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Series representations > Generalized power series > Expansions at z==infinity





http://functions.wolfram.com/08.06.06.0079.01









  


  










Input Form





EllipticPi[n, z, m] \[Proportional] (-1)^Round[Re[z]/Pi] (((I Sqrt[-Sin[z]^2])/Sin[z]) (EllipticPi[n, m] + (I/Sqrt[-m]) (EllipticK[1/m] - EllipticPi[1/n, 1/m] + I (1 - Sqrt[m/(m - 1)] Sqrt[(m - 1)/m]) (EllipticK[1 - 1/m] + (n/(m - n)) EllipticPi[(m - 1)/(m - n), (m - 1)/m]))) + ((Sqrt[-Sin[z]^2] Sqrt[(-m) Sin[z]^2])/ (n m Sin[z]^5)) Sum[(m^(-k + u) n^(i - u) Pochhammer[1/2, i] Pochhammer[1/2, k - u])/(i! (k - u)! (3 + 2 k))/Sin[z]^(2 k), {k, 0, Infinity}, {u, 0, k}, {i, 0, u}]) + 2 Round[Re[z]/Pi] EllipticPi[n, m] /; (Abs[z] -> Infinity) && ((0 < Arg[n] < Pi/2 && 0 < Arg[m] < Pi) || (Pi/2 < Arg[n] < Pi && 0 < Arg[m] < Pi/2 && (Abs[m] < 1 || (Abs[n] > 1 && Abs[n] > Abs[m]))) || (Pi/2 < Arg[n] < Pi && Pi/2 < Arg[m] < Pi && Abs[n] > Abs[m]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], RowBox[List["Sin", "[", "z", "]"]]], RowBox[List["(", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]], "+", RowBox[List[FractionBox["\[ImaginaryI]", SqrtBox[RowBox[List["-", "m"]]]], RowBox[List["(", RowBox[List[RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]], "-", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["1", "n"], ",", FractionBox["1", "m"]]], "]"]], "+", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox["m", RowBox[List["m", "-", "1"]]]], SqrtBox[FractionBox[RowBox[List["m", "-", "1"]], "m"]]]]]], ")"]], RowBox[List["(", " ", RowBox[List[RowBox[List["EllipticK", "[", RowBox[List["1", "-", FractionBox["1", "m"]]], "]"]], "+", RowBox[List[FractionBox[RowBox[List["n", " "]], RowBox[List["m", "-", "n"]]], RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List["m", "-", "1"]], RowBox[List["m", "-", "n"]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], RowBox[List["n", " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "5"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "u"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["m", RowBox[List[RowBox[List["-", "k"]], "+", "u"]]], " ", SuperscriptBox["n", RowBox[List["i", "-", "u"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["k", "-", "u"]]]], "]"]]]], RowBox[List[RowBox[List["i", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "u"]], ")"]], "!"]], RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "k"]]]], ")"]]]]], SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List[RowBox[List["-", "2"]], " ", "k"]]]]]]]]]]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["0", "<", RowBox[List["Arg", "[", "n", "]"]], "<", FractionBox["\[Pi]", "2"]]], "\[And]", RowBox[List["0", "<", RowBox[List["Arg", "[", "m", "]"]], "<", "\[Pi]"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "n", "]"]], "<", "\[Pi]"]], "\[And]", RowBox[List["0", "<", RowBox[List["Arg", "[", "m", "]"]], "<", FractionBox["\[Pi]", "2"]]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "<", "1"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "n", "]"]], ">", "1"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "n", "]"]], ">", RowBox[List["Abs", "[", "m", "]"]]]]]], ")"]]]], ")"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "n", "]"]], "<", "\[Pi]"]], "\[And]", RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "m", "]"]], "<", "\[Pi]"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "n", "]"]], ">", RowBox[List["Abs", "[", "m", "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#8520; </mi> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mfrac> <mi> m </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> n </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#10072; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> <mo> &#10072; </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> u </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> m </mi> <mrow> <mi> u </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> n </mi> <mrow> <mi> i </mi> <mo> - </mo> <mi> u </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> i </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;i&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> u </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;u&quot;]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> i </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> u </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> n </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> n </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &gt; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> n </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &gt; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EllipticPi </ci> <ci> n </ci> <apply> <arcsin /> <ci> z </ci> </apply> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticPi </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> n </ci> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> u </ci> </uplimit> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <ci> m </ci> <apply> <plus /> <ci> u </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> i </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> i </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <or /> <apply> <and /> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <arg /> <ci> n </ci> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <arg /> <ci> m </ci> </apply> <pi /> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arg /> <ci> n </ci> </apply> <pi /> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <arg /> <ci> m </ci> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <or /> <apply> <lt /> <apply> <abs /> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <and /> <apply> <gt /> <apply> <abs /> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <apply> <abs /> <ci> n </ci> </apply> <apply> <abs /> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arg /> <ci> n </ci> </apply> <pi /> </apply> <apply> <lt /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arg /> <ci> m </ci> </apply> <pi /> </apply> <apply> <gt /> <apply> <abs /> <ci> n </ci> </apply> <apply> <abs /> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]], "-", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["1", "n"], ",", FractionBox["1", "m"]]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox["m", RowBox[List["m", "-", "1"]]]], " ", SqrtBox[FractionBox[RowBox[List["m", "-", "1"]], "m"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticK", "[", RowBox[List["1", "-", FractionBox["1", "m"]]], "]"]], "+", FractionBox[RowBox[List["n", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List["m", "-", "1"]], RowBox[List["m", "-", "n"]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]]]], RowBox[List["m", "-", "n"]]]]], ")"]]]]]], ")"]]]], SqrtBox[RowBox[List["-", "m"]]]]]], ")"]]]], RowBox[List["Sin", "[", "z", "]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "u"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["m", RowBox[List[RowBox[List["-", "k"]], "+", "u"]]], " ", SuperscriptBox["n", RowBox[List["i", "-", "u"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["k", "-", "u"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List[RowBox[List["-", "2"]], " ", "k"]]]]], RowBox[List[RowBox[List["i", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "u"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "k"]]]], ")"]]]]]]]]]]]]], RowBox[List["n", " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "5"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["0", "<", RowBox[List["Arg", "[", "n", "]"]], "<", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List["0", "<", RowBox[List["Arg", "[", "m", "]"]], "<", "\[Pi]"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "n", "]"]], "<", "\[Pi]"]], "&&", RowBox[List["0", "<", RowBox[List["Arg", "[", "m", "]"]], "<", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "<", "1"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "n", "]"]], ">", "1"]], "&&", RowBox[List[RowBox[List["Abs", "[", "n", "]"]], ">", RowBox[List["Abs", "[", "m", "]"]]]]]], ")"]]]], ")"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "n", "]"]], "<", "\[Pi]"]], "&&", RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "m", "]"]], "<", "\[Pi]"]], "&&", RowBox[List[RowBox[List["Abs", "[", "n", "]"]], ">", RowBox[List["Abs", "[", "m", "]"]]]]]], ")"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.