Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Series representations > Generalized power series > Expansions at m==1





http://functions.wolfram.com/08.06.06.0088.01









  


  










Input Form





EllipticPi[n, z, m] \[Proportional] (-1)^Round[Re[z]/Pi] ((Sqrt[n] ArcTanh[Sqrt[n] Sin[z]] - ArcTanh[Sin[z]])/ (n - 1) - (1/(4 (-1 + n)^2)) ((1 + n) ArcTanh[Sin[z]] - 2 Sqrt[n] ArcTanh[Sqrt[n] Sin[z]] + (-1 + n) Sec[z] Tan[z]) (m - 1) + (3/(64 (-1 + n)^3)) ((-3 - 6 n + n^2) ArcTanh[Sin[z]] + 8 Sqrt[n] ArcTanh[Sqrt[n] Sin[z]] + (1/2) (-1 + n) (-1 - 3 n + (-5 + n) Cos[2 z]) Sec[z]^3 Tan[z]) (m - 1)^2 + \[Ellipsis]) - Round[Re[z]/Pi] (Log[1 - m] (1/(1 - n)) (1 + ((n + 1) (m - 1))/(4 (n - 1)) - (3 (-3 - 6 n + n^2) (m - 1)^2)/(64 (n - 1)^2) + \[Ellipsis]) - (-4 Log[2] + Sqrt[n] (-Log[1 - Sqrt[n]] + Log[1 + Sqrt[n]]))/(-1 + n) + ((-1 + 2 Log[2] + 2 n Log[2] + Sqrt[n] (Log[1 - Sqrt[n]] - Log[1 + Sqrt[n]])) (m - 1))/(2 (-1 + n)^2) - (1/(64 (-1 + n)^3)) ((21 + 12 n - 5 n^2 + 12 (-3 + (-6 + n) n) Log[2] + 24 Sqrt[n] (-Log[1 - Sqrt[n]] + Log[1 + Sqrt[n]])) (m - 1)^2) + \[Ellipsis]) /; (m -> 1) && !Element[(Pi + 2 Re[z])/(4 Pi), Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[SqrtBox["n"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["n"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "-", RowBox[List["ArcTanh", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], RowBox[List["n", "-", "1"]]], "-", RowBox[List[FractionBox["1", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["ArcTanh", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox["n"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["n"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", RowBox[List["Sec", "[", "z", "]"]], " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], "+", RowBox[List[FractionBox["3", RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], " ", RowBox[List["ArcTanh", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], "+", RowBox[List["8", " ", SqrtBox["n"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["n"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["3", " ", "n"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", "n"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", "z", "]"]], "3"], " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], " ", "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "m"]], "]"]], FractionBox["1", RowBox[List["1", "-", "n"]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["2", "n", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], ")"]], RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "2"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "3"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["21", "+", RowBox[List["12", " ", "n"]], "-", RowBox[List["5", " ", SuperscriptBox["n", "2"]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", "n"]], ")"]], " ", "n"]]]], ")"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["24", " ", SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["m", "\[Rule]", "1"]], ")"]], "\[And]", RowBox[List["Not", "[", RowBox[List[FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["2", " ", RowBox[List["Re", "[", "z", "]"]]]]]], RowBox[List["4", " ", "\[Pi]"]]], "\[Element]", "Integers"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mn> 3 </mn> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mo> &#172; </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#928; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> &#10072; </ms> <ms> m </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#8733; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8970; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#960; </ms> </apply> <ms> &#8969; </ms> </list> </apply> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> sec </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> tan </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <apply> <ci> RowBox </ci> <list> <ms> 64 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 3 </ms> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 3 </ms> </list> </apply> <ms> n </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 5 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> cos </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> tan </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sec </ms> <ms> 3 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> n </ms> <ms> 2 </ms> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 6 </ms> <ms> n </ms> </list> </apply> <ms> - </ms> <ms> 3 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 8 </ms> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> + </ms> <ms> &#8230; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#8970; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#960; </ms> </apply> <ms> &#8969; </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> n </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <ms> - </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 3 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> n </ms> <ms> 2 </ms> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 6 </ms> <ms> n </ms> </list> </apply> <ms> - </ms> <ms> 3 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 64 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> </apply> <ms> + </ms> <ms> &#8230; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> + </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <ms> 64 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 3 </ms> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 5 </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <ms> n </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 12 </ms> <ms> n </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 24 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SqrtBox </ci> <ms> n </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 12 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 6 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> n </ms> </list> </apply> <ms> - </ms> <ms> 3 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <ms> 21 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> + </ms> <ms> &#8230; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> &#62754; </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#172; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <ms> &#960; </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <ms> &#960; </ms> </list> </apply> </apply> <ms> &#8712; </ms> <apply> <ci> TagBox </ci> <ms> &#8484; </ms> <apply> <ci> Function </ci> <list /> <integers /> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[SqrtBox["n"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["n"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "-", RowBox[List["ArcTanh", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], RowBox[List["n", "-", "1"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["ArcTanh", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox["n"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["n"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", RowBox[List["Sec", "[", "z", "]"]], " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], " ", RowBox[List["ArcTanh", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], "+", RowBox[List["8", " ", SqrtBox["n"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["n"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["3", " ", "n"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", "n"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", "z", "]"]], "3"], " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "3"]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "m"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["1", "-", "n"]]], "-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["21", "+", RowBox[List["12", " ", "n"]], "-", RowBox[List["5", " ", SuperscriptBox["n", "2"]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", "n"]], ")"]], " ", "n"]]]], ")"]], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["24", " ", SqrtBox["n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["n"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["n"]]], "]"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "3"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["m", "\[Rule]", "1"]], ")"]], "&&", RowBox[List["!", RowBox[List[FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["2", " ", RowBox[List["Re", "[", "z", "]"]]]]]], RowBox[List["4", " ", "\[Pi]"]]], "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.